
L-THEORY OF C∗-ALGEBRAS

MARKUS LAND, THOMAS NIKOLAUS, AND MARCO SCHLICHTING

Abstract. We establish a formula for the L-theory spectrum of real C∗-algebras from which
we deduce a presentation of the L-groups in terms of the topological K-groups, extending all

previously known results of this kind. Along the way, we extend the integral comparison map

τ : k → L obtained in previous work by the first two authors to real C∗-algebras and interpret
it using topological Grothendieck–Witt theory. Finally, we use our results to give an integral

comparison between the Baum–Connes conjecture and the L-theoretic Farrell–Jones conjecture,

and discuss our comparison map τ in terms of the signature operator on oriented manifolds.
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1. Introduction

This paper is concerned with certain invariants of real C∗-algebras. A classical and powerful
invariant of real C∗-algebras is topological K-theory. However, any C∗-algebra is a ring with in-
volution and as such also has an associated (projective) algebraic L-theory. The relation between
these two invariants has been an object of investigation for a long time and the purpose of this
paper is to give a definitive treatment of this relation.

One of the prominent results in this direction is a theorem due to Karoubi, Miller, and Rosenberg
[Kar80Kar80, Mil98Mil98, Ros95Ros95] which states that for complex C∗-algebras A, there are natural group
isomorphisms

(1.1) Kn(A) ∼= Ln(A)

for all integers n. It is, however, well-known that the (topological) K-theory spectrum K(A) and
the (algebraic) L-theory spectrum L(A) are not equivalent and that the isomorphism (1.11.1) does
not hold true for real C∗-algebras A. In previous work of the first two authors, the relation be-
tween the topological K- and L-spectra of complex C∗-algebras was studied [LN18LN18]. Neglecting
2-torsion, or more precisely after inverting 2, this relation extends to real C∗-algebras and one
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can summarise the situation as follows: On complex C∗-algebras, there is a unique lax symmetric
monoidal natural transformation τ : k → L which induces an equivalence K[ 1

2 ] → L[ 1
2 ], and this

latter equivalence extends in a compatible way to real C∗-algebras. Here, k denotes the connective
topological K-theory spectrum functor, i.e. the connective cover of K. The map τA : k(A)→ L(A)
induces an isomorphism on π0 and π1, so that by 2-periodicity of the two theories, one recovers the
fact that all L-groups are isomorphic to the corresponding topological K-groups. However, under
this isomorphism the map τC : k(C) → L(C) induces multiplication by 2 on π2, so integrally, the
periodicity in K-theory does not match up with the periodicity in L-theory. Explicitly left open
in [LN18LN18] was an integral comparison between K- and L-theory for real C∗-algebras, a gap which
will be reconciled in this paper.

For the rest of this paper, C∗-algebras are now agreed to be real C∗-algebras, we will add the
adjective complex when we need it. The purpose of this paper is to explain in full generality how
to describe the L-theory of C∗-algebras in terms of their topological K-theory and in particular
how to express the L-groups in terms of topological K-groups. We emphasize that L-theory refers
to projective L-theory. We will also discuss free L-theory of unital algebras in Section 55 but stick
to the case of projective L-theory for this introduction. We note that both K- and L-theory of
a complex C∗-algebra depend only on the underlying (real) C∗-algebra, so the case of complex
C∗-algebras is treated implicitly. To follow standard notation in homotopy theory, we shall write
KO and KU for K(R) and K(C), respectively, and likewise ko and ku for their connective covers
k(R) and k(C), respectively. The following are our main results.

Theorem A. There is a unique lax symmetric monoidal transformation τ : k→ L and the induced
map

k(A)⊗ko L(R) −→ L(A)

is an equivalence of spectra for each C∗-algebra A.

Theorem B. Let A be a C∗-algebra. There are natural isomorphisms of abelian groups

(1) L0(A) ∼= K0(A),

(2) L1(A) ∼= coker(K0(A)
·η−→ K1(A))

(3) L2(A) ∼= ker(K6(A)
·η−→ K7(A))

(4) L3(A) ∼= K7(A).

Here η is the non-trivial element in K1(R) = π1(KO).

Remark. For a C∗-algebra A, there is the generalised Wood exact sequence

· · · −→ Kn−1(A)
η−→ Kn(A)

c−→ Kn(AC)
uβ−1

C−→ Kn−2(A)
η−→ Kn−1(A) −→ · · ·

Consequently, we also find canonical isomorphisms

(1) L1(A) ∼= ker
(
K−1(AC)

u→ K−1(A)
)
, and

(2) L2(A) ∼= coker
(
K0(A)

c→ K0(AC)
)
.

By the 4-fold periodicity of L-theory, Theorem BB gives a natural description of all L-groups in
terms of topological K-groups, see Theorem 4.54.5 for a more canonical formulation. Under these
isomorphisms we also describe the effect on homotopy groups of the map τA : Kn(A) → Ln(A)
from Theorem AA for n ≥ 0 (see Proposition 5.15.1) as well as the exterior multiplication maps on the
L-groups in terms of the exterior multiplication maps on the K-groups (see Proposition 5.35.3). In
Section 66 we discuss a number of examples and calculate L-groups using Theorem BB.

Remark. We note that Theorem AA implies that two real C∗-algebras A0 and A1 whose K-theory
spectra are equivalent as module spectra over ko have equivalent L-theory spectra. Likewise,
Theorem BB implies that if the K-groups of A0 and A1 are isomorphic as graded Z[η]-modules,
where |η| = 1 and η acts in the canonical way on the K-groups, then also the L-groups of A0 and
A1 are isomorphic.



L-THEORY OF C∗-ALGEBRAS 3

Kasparov’s KK-theory is a central tool for studying the K-theory of C∗-algebras. It therefore
comes as no surprise that one would also like to study L-theory of C∗-algebras by KK-theoretic
means. In the case of complex C∗-algebras, this was done in [LN18LN18] but at the time of writing
[LN18LN18], it was not known whether L-theory of C∗-algebras is KK-invariant in general. Even
the fact that it is KK-invariant on complex C∗-algebras is a result which we still find quite
surprising, since KK-theory is an intrinsically analytic theory, whereas L-theory depends only on
the underlying algebraic structure of a C∗-algebra. Even more, L-theory commutes with filtered
colimits of involutive rings and thus only depends on the underlying algebraic structure of proper
involutive subalgebras, which do not themselves need to be C∗-algebras.

It is an immediate consequence of Theorem AA that L-theory is a KK-invariant functor on C∗-
algebras. Our proof works the other way around though: instead of deducing KK-invariance from
Theorem AA, we use it as an input for the proof of Theorem AA, and we give an argument for
KK-invariance based on a description for 2-complete L-theory instead. Indeed, L[1

2 ] was shown to
be KK-invariant in [LN18LN18] so it remains only to see that L(−)∧2 is KK-invariant. This is a direct
consequence of the following result, which we derive from [KSW16KSW16, Theorem D.1].

Theorem C. For every Banach algebra with involution, the canonical map L(A)→ k(A)tC2 is a
2-adic equivalence.

This is a topological version of Thomason’s homotopy limit problem in hermitian algebraic
K-theory. This algebraic homotopy limit problem has been studied extensively, see e.g. [HKO11HKO11,
BH20BH20, BKSØ15BKSØ15, CDH+20cCDH+20c] for the case of fields, schemes over Z[ 1

2 ], and Dedekind rings.

Assembly Maps. As in [LN18LN18], a major motivation for studying the relation between K- and L-
theory of C∗-algebras is to obtain a precise relationship between the Baum–Connes conjecture and
the L-theoretic Farrell–Jones conjecture, inspired by the observation that both of these conjectures
imply the Novikov conjecture. In [LN18LN18] such a relation was understood after inverting 2 and we
offer here the following integral refinement:

Theorem D. The map τ : k→ L induces a commutative diagram

koG∗ (EG) k∗(C
∗
rG)

LRG∗ (EG) L∗(RG) L∗(C
∗
rG)

BC

τ τ

FJ

where BC and FJ denote the Baum–Connes and Farrell–Jones assembly maps.

After inverting the Bott element βR and 2, one recovers [LN18LN18, Theorem D]. In addition, the
kernel and cokernels of the vertical maps can in principle be described using our identification of
τ on homotopy groups. For the left hand vertical map this is most effective in the case where G
is torsion free as explained in Section 77.

Before our work [LN18LN18], there have already been made several fruitful efforts to relate the
surgery theoretic and the analytic approach to the Novikov conjecture, most notably the work
of Higson and Roe [HR05aHR05a, HR05bHR05b, HR05cHR05c]. There, a central idea is to consider the signature
operator DM of an oriented manifold M as an appropriate K-theory class and use this to construct
a comparison map from the surgery exact sequence to a 2-inverted exact sequence of topological
K-groups. It has been known for a long time that the signature operator of an oriented manifold,
unlike the spin Dirac operator, does not give rise to a map of spectra MSO → ko, due to factors
of 2 appearing for the signature operator on a boundary11, see [RW06RW06, Remark 4]. The following
theorem expresses the fact that, with appropriate modifications, the signature operator does give
rise to an E∞ map MSO → ko[ 1

2 ] and clarifies its relation with the Sullivan–Ranicki orientation;
a version of this theorem discarding E∞-structures was discussed in [RW06RW06].

1Also, any map between those spectra induces the trivial map on homotopy groups as follows from the fact that
MSO at primes 2 vanishes K(1)-locally.
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Theorem E. The association M2n 7→ 2−bn/2c · [DM ] refines uniquely to a map of E∞-ring spectra
LAS : MSO→ ko[ 1

2 ]. This map participates in the following commutative diagram of E∞-rings

MSO ko[ 1
2 ]

L(R) L(R)[ 1
2 ]

LAS

σR τ

can

where σR is the Sullivan–Ranicki orientation.

Here, the map LAS induces on homotopy groups a version of the L-genus, precisely the version
of the L-genus that has been employed by Atiyah and Singer in their index-theoretic proof of
Hirzebruch’s signature theorem [AS68AS68]. The map σR on the other hand induces Hirzebruch’s
original L-genus. Thus the result says that the two differ exactly by our comparison map.

Acknowledgements. The authors would like to thank Johannes Sprang for his explanations
regarding p-adic moment sequences and Johannes Ebert, Michael Joachim, and Achim Krause
for helpful discussions, as well as anonymous referees for their helpful comments. The authors
would also like to thank the Hausdorff Center of mathematics for hospitality and providing a
great working environment during the conference “Hermitian K-theory and trace methods” in
November 2016. ML gave a talk about the complex case of Theorem CC building on the earlier
results obtained with TN and it was there that this paper was born.

2. Preliminaries

In this section we will briefly recall the notions of C∗-algebras, KK-theory, and L-theory.

C∗-algebras. A nice reference for C∗-algebras over R and their K-theory is Schroeder’s book
[Sch93Sch93], further references include [Con98Con98, Goo82Goo82, Li03Li03] and [Tak02Tak02, Tak03aTak03a, Tak03bTak03b] for complex
C∗-algebras.

Definition 2.1. A C∗-algebra is Banach algebra A equipped with an involution (−)∗ : A→ Aop

with x∗∗ = x such that the following two conditions hold:

(1) For all x ∈ A we have ||x∗x|| = ||x||2, and
(2) for all x ∈ A, the element 1 + x∗x is invertible in the unitalization A+.

A complex C∗-algebra is a complex Banach algebra A whose underlying real Banach algebra is a
C∗-algebra and where the involution is complex sesquilinear, i.e. (λx)∗ = λ̄x∗.

Remark 2.2. The condition that 1 + x∗x is invertible might be a bit surprising at first glance.
We note that it is a consequence of spectral calculus that this condition is automatically fulfilled
for complex C∗-algebras, see e.g. [Tak02Tak02]. In the real case it can however not be left away, since
for example C equipped with the identity involution satisfies the other conditions but 1 + i2 = 0
is not invertible.

Remark 2.3. The well-known structure theorems for complex C∗-algebras have the following real
analogues:

(1) Every C∗-algebra has a faithful representation on a real Hilbert space H, i.e. is isometri-
cally isomorphic to a ∗- and norm-closed subalgebra of B(H).

(2) Every commutative and unital C∗-algebra is isometrically isomorphic to the C∗-algebra
of C2-equivariant continuous functions X → C for a compact Hausdorff space X equipped
with a C2-action, where C2 acts on C by complex conjugation.

Remark 2.4. A number of remarks are in order.

(1) Together with ∗-homomorphisms, C∗-algebras form a category C∗Alg, and likewise com-
plex C∗-algebras form a category C∗AlgC. We emphasise that C∗-algebras are not assumed
to be unital, nor that ∗-homomorphisms are assumed to preserve a unit if it exists. Re-
quiring, however, algebras to have a unit and morphisms to preserve units, one obtains
similarly the categories C∗Alg+ and C∗Alg+

C of unital C∗-algebras.
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(2) We note that ∗-homomorphisms are automatically contractive and hence continuous.
(3) By construction, there is a forgetful functor C∗AlgC → C∗Alg which we call the reali-

fication, moreover, the construction A 7→ AC
def
= A ⊗R C extends to a natural functor

C∗Alg→ C∗AlgC, which we call the complexification.
(4) There are unitalisation functors (−)+

R : C∗Alg → C∗Alg+ and (−)+
C : C∗AlgC → C∗Alg+

C
which come with natural split exact sequences

0 −→ A −→ A+
R −→ R −→ 0 and 0 −→ B −→ B+

C −→ C −→ 0

respectively. If A is unital, then A+
R is canonically isomorphic to A × R, and likewise in

the complex case.
(5) The complexification functor is compatible with unitalisation, whereas the realification

functor is not compatible with unitalisation. More precisely the solid diagram commutes,
whereas the diagram involving dashed arrows does not.

C∗Alg C∗Alg+

C∗AlgC C∗Alg+
C

(6) The categories C∗Alg and C∗AlgC are each equipped with a canonical symmetric monoidal
structure, the maximal tensor product over R and C, respectively. The maximal tensor
product preserves short exact sequences of C∗-algebras and topological K-theory is canon-
ically lax symmetric monoidal.

Definition 2.5. A C∗-algebra is called separable if it contains a countable and dense subset. The
full subcategory of C∗Alg(C) on separable C∗-algebras will be written C∗Algsep

(C).

The complexification and realification functors restrict to the subcategory of separable algebras.
In addition, we note that every C∗-algebra is the union of its separable C∗-subalgebras and that
the collection of separable C∗-subalgebras forms a filtered poset. For technical reasons, we will
restrict our attention to separable algebras momentarily. However, all invariants F of C∗-algebras
we shall consider (i.e. topological K-theory and L-theory) send an algebra A to the filtered colimit
of F applied to the separable subalgebras of A, and consequently, we can get rid of the separability
assumptions.

2.1. KK-theory. In his seminal work on the Novikov conjecture [Kas88Kas88], Kasparov invented
(equivariant) bivariant topological K-theory, known as KK-theory. Phrased in categorical lan-
guage, Kasparov’s machine allowed to construct a tensor triangulated category KK and a functor

C∗Algsep −→ KK

which was later shown to be a localisation (necessarily at the KK-equivalences, i.e. those ∗-
homomorphisms whose induced map in the KK-category is an isomorphism) [Cun87Cun87] and to be the
initial functor to an additive category which is split exact and stable [Hig87Hig87], see e.g. [BEL21aBEL21a]
for more precise statements and a guide through (parts of) the literature. In [LN18LN18], it was
then observed that the ∞-categorical localisation of C∗Algsep at the KK-equivalences is a stably
symmetric monoidal ∞-category whose homotopy category is canonically equivalent to the tensor
triangulated category KK of Kasparov. This observation has also been taken up in [BEL21aBEL21a]
(including extensions of these results to possibly non-separable C∗-algebras) in the equivariant
case and was used in [BEL21bBEL21b] in a proof of an equivariant form of Paschke duality.

Definition 2.6. We denote by KK = C∗Algsep[KK−1] the ∞-categorical localisation of C∗Algsep

at the KK-equivalences. Likewise, we denote by KKC = C∗Algsep
C [KK−1] the variant for complex

C∗-algebras.

Remark 2.7. In [LN18LN18], different notation was used: In loc. cit. the authors were focussed
mostly on the complex case and therefore denoted C∗Algsep

C [KK−1] by KK∞, and its real variant

by KKR
∞; the subscript∞ was added to make clear that one was now working with an appropriate
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∞-category rather than a triangulated category. We refrain from adding this subscript in this
paper, however.

Definition 2.8. The topological K-theory functor for separable C∗-algebras is given by the com-
posite

K: C∗Algsep −→ KK −→ Sp

where the first functor is the localisation functor, the second is the corepresented functor mapKK(R,−),
and Sp denotes the ∞-category of spectra.

Remark 2.9. There are of course other, more classical definitions of topological K-theory functors
[Joa04Joa04, Joa03Joa03], and it was shown in [LN18LN18] that they are canonically equivalent to the definition
given above. These more classical definitions are in fact given for possibly non-separable algebras
and satisfy

K(A) ' colim
A′⊆sepA

K(A′)

so we may also view the above definition as describing K-theory of possibly non-separable algebras.
In [BEL21aBEL21a] this was formalised by considering the ind-completion of KK and again considering
the functor corepresented by R.

This definition, however, does not give all structure that topological K-theory has: For instance,
it is a purely formal consequence of the definitions that K-theory sends certain short exact se-
quences (e.g. where the surjection is a Schochet fibration or admits a cpc split) to fibre sequences,
but it is not a priori clear that it sends all short exact sequences of C∗-algebras to fibre sequences.
However, this is known to be true, e.g. as a special case of [BEL21aBEL21a, Theorem 1.15] (for X = ∗
in the notation of loc. cit.).

2.2. L-theory. In this subsection, we review some basic properties of L-theory which we will use
throughout this paper, see also [LN18LN18, §2.2] for a further summary.

For our purposes, L-theory is most naturally considered as a functor introduced by Ranicki in
[Ran92Ran92]

Ringinv −→ Sp

where Ringinv is the category of involutive rings with ring homomorphisms preserving the involu-
tion. In fact, this functor can be written as the composition

Ringinv −→ Catp
∞ −→ Sp

where Catp
∞ is the∞-category of Poincaré categories on which L-theory is a natural invariant, see

[CDH+20aCDH+20a, CDH+20bCDH+20b, CDH+20cCDH+20c] for applications of this formalism to Grothendieck–Witt theory
of number rings. Together with [CDH+22CDH+22], or using results of Laures–McClure [LM14LM14, LM21LM21],
L-theory is canonically endowed with a lax symmetric monoidal structure. The first functor in the
above composite sends a ring with involution R to the pair (Dp(R), Ϙs), so more precisely we are
considering projective, 4-periodic symmetric L-theory of involutive rings in the sense of [Ran92Ran92].
Prior to the work [CDH+20aCDH+20a, CDH+20bCDH+20b, CDH+20cCDH+20c], the third author had introduced L-spectra
for dg-categories over Z[ 1

2 ] with weak equivalences [Sch17Sch17, §7]. In [CDH+20bCDH+20b, Appendix B.2], it

is shown that for Z[ 1
2 ]-algebras with involution, the two constructions of L-spectra are naturally

equivalent.
There are natural forgetful functors

C∗Alg+ −→ Ringinv

Z[
1
2 ]
−→ Ringinv

which define L-theory of unital C∗-algebras. Since many of the possibly different notions of L-
theory agree on rings in which 2 is invertible, and since this paper is concerned with C∗-algebras,
we shall from now on restrict our attention to Z[ 1

2 ]-algebras with involution as the domain of
L-theory.
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L-theory for non-unital algebras. For our applications, which involve KK-theory, it is nec-
essary to define L-theory for possibly non-unital algebras. For this we define a unitalisation of
non-unital rings in the usual way

Ringinv

Z[
1
2 ],nu

−→ Ringinv

Z[
1
2 ]

R 7→ R+

Z[
1
2 ]

and note again that for unital Z[ 1
2 ]-algebras S, we have S+

Z[
1
2 ]

∼= S×Z[ 1
2 ]. We then define L-theory

on non-unital Z[ 1
2 ]-algebras as follows

L(R)
def
= fib

(
L(R+

Z[
1
2 ]

)→ L(Z[ 1
2 ])
)
.

Since L-theory commutes with finite products [LN18LN18, Corollary 4.4] (for this to be true it is
crucial to work with projective L-theory, rather than free L-theory which appears in the h-cobordisn
classification program in surgery theory), we have not changed the definition of L-theory on unital
rings, up to canonical equivalence.

However, from the point of view of applying L-theory to C∗-algebras, we now have constructed
two functors

C∗Alg −→ Ringinv

one given by A 7→ A+
R and the other one given by A 7→ A+

Z[
1
2 ]

, i.e. we can either unitalise in

R-algebras or in Z[ 1
2 ]-algebras. Moreover, for complex algebras, we have three such functors, by

adjoining a unit in C-algebras, R-algebras, or Z[ 1
2 ]-algebras, respectively22. We note that for a

C∗-algebra A, there is a natural pullback diagram

A+

Z[
1
2 ]

A+
R A+

C

Z[ 1
2 ] R C

where the right most vertical part only exists if A is a complex C∗-algebra and where the vertical
maps are split surjective. It is a theorem of Ranicki [Ran81Ran81], see e.g. [LN18LN18, Corollay 4.3] that
both squares induce pullback squares on L-theory. Consequently, extending L-theory to non-unital
(complex) C∗-algebras can be performed either by adjoining a unit in C-algebras, or by forgetting
to the underlying real C∗-algebra and then adjoining a unit in R-algebras, or by forgetting to the
underlying Z[ 1

2 ]-algebra and adjoining a unit there.

Remark 2.10. We do not expect the diagram

L(A+
Z ) L(A+

Z[
1
2 ]

)

L(Z) L(Z[ 1
2 ])

to be a pullback for every Z[ 1
2 ]-algebra A. As a consequence, we do not expect the definition of L-

theory for non-unital rings to be independent of the base over which the unitalisation is performed
in general. Ranicki however shows that this square is a pullback if symmetric L-theory is replaced
by quadratic L-theory, see [Ran81Ran81, 6.3.1].

Finally, as explained in [LN18LN18, Appendix], the fact that L-theory is lax symmetric monoidal
on unital C∗-algebras allows to deduce that L-theory as defined above is in fact canonically lax
symmetric monoidal on all C∗-algebras.

2Of course, one could also unitalise in Z-algebras, but see Remark 2.102.10 below.
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3. Proof of Theorem CC

For convenience we state again the theorem we shall prove in this section. We emphasize that
KK-theory is not used in this proof.

Theorem 3.1. Let A be a Banach algebra with involution. Then the canonical map L(A) →
k(A)tC2 is a 2-adic equivalence.

In the proof of this theorem and in fact also of Theorem AA, we will make use of the topological
Grothendieck–Witt spectra introduced in [Sch17Sch17, §10] which we denote by GWtop(A). We recall
that the family of topological n-simplices {∆n}n∈∆ form, via the canonical coface and codegeneracy
maps, a cosimplicial topological space. Hence, by considering algebras of continuous functions one
obtains a simplicial involutive Banach algebra C0(∆n, A) (with pointwise involution) and one
defines GWtop(A) as the geometric realisation

GWtop(A) = colim
n∈∆op

GW(C0(∆n, A))

of the resulting simplicial spectrum, where GW is the (algebraic) Grothendieck–Witt functor.
We recall from [Sch17Sch17, Prop. 10.2] that connective topological K-theory k(A) admits a similar
description in terms of connective algebraic K-theory Kalg:

k(A) = colim
n∈∆op

Kalg(C0(∆n, A)).

For any ring with involution R with 2 ∈ R× there is a natural fibre sequence

(3.1) (Kalg(R))hC2
−→ GW(R) −→ L(R),

see e.g. [CDH+20bCDH+20b, Main Theorem] or [Sch17Sch17, Theorem 7.6] using that the Grothendieck–Witt
spectra of [CDH+20bCDH+20b] and of [Sch17Sch17] agree, see [CDH+20bCDH+20b, Appendix B.2]. More specifically, in
the notation of [CDH+20bCDH+20b], GW(R) is given by GW(R; ϘsR), and likewise L(R) is given by L(R; ϘsR);
we remark here that by assumption 2 is invertible in R, many of the a priori different versions of
Grothendieck–Witt theory studied in [CDH+20bCDH+20b, CDH+20cCDH+20c] collapse to the same object, which
we here simply denote by GW(R), see e.g. [CDH+20cCDH+20c, Remark R.4]. By [CDH+20bCDH+20b, Corollary
4.4.14] this fibre sequence can also be encoded in the following natural pullback diagram.

(3.2)

GW(R) L(R)

Kalg(R)hC2 Kalg(R)tC2

We may then likewise define

Ltop(A) = colim
n∈∆op

L(C0(∆n, A)).

An astonishing feature of algebraic L-theory is the following homotopy invariance statement.

Proposition 3.2. For every Banach algebra with involution, the canonical map L(A)→ Ltop(A)
is an equivalence.

Proof. Since L-theory is 4-periodic, it suffices to show that L(A) → Ltop(A) induces an isomor-
phism on negative homotopy groups. Recall that a sequence of spectra is a fibre sequence if and
only if it is a cofibre sequence. Since colimits commute with colimits, we find that geometric
realizations preserve cofibre sequences and homotopy orbits for group actions. Consequently, from
the fibre sequence (3.13.1) and the definitions, we have a fibre sequence

(3.3) k(A)hC2
−→ GWtop(A) −→ Ltop(A).

Since the first term in this sequence is connective, the latter map induces isomorphisms on negative
homotopy groups. [Sch17Sch17, Remark 10.4] gives that GW(A)→ GWtop(A) induces an isomorphism
on negative homotopy groups, so the proposition is proven. �

Combining Proposition 3.23.2 with the fibre sequence (3.33.3), we obtain the following corollary.
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Corollary 3.3. There is a natural fibre sequence of functors

k(−)hC2
−→ GWtop(−) −→ L(−).

Proof of Theorem CC. We first claim that there is the following natural square of spectra

(3.4)

GWtop(A) L(A)

k(A)hC2 k(A)tC2

and that this square is a pullback square. To see this we use Proposition 3.23.2 to replace L(A)
by its topological variant and by taking the geometric realization of (3.23.2) we get a diagram as
desired (using the canonical colimit interchange map for the lower two corners). To see that
it is a pullback we use that the canonical map induced on horizontal fibres is an equivalence,
since homotopy orbits commute with the geometric realization. We wish to show that the right
vertical map is an equivalence modulo 2. To do so, we first note that since the transformation
L(−) → k(−)tC2 is lax symmetric monoidal, the map L(A) → k(A)tC2 is one of L(R)-modules so
its fibre is 4-periodic. Then we consider the Bott-periodic analog GWtop(A) of GWtop(A) also
used in [KSW16KSW16, Appendix D] which participates in the following commutative diagram.

k(A)hC2 GWtop(A)

K(A)hC2
GWtop(A)

One defines a functor Ltop
33 as the cofibre of the lower horizontal map in the above square. By

Corollary 3.33.3 one obtains a map from the left to the right following square

(3.5)

GWtop(A) GWtop(A) L(A) Ltop(A)

k(A)hC2 K(A)hC2 k(A)tC2 K(A)tC2

again using the definition of the Tate construction. One directly checks that the square of fibres
is cartesian, so that the induced map of total fibres of the above squares is an equivalence. Fur-
thermore, from [KSW16KSW16, Lemma D.2], it follows that Ltop(A)/2 = 0 = K(A)tC2/2. Consequently,
modulo 2 there is a canonical equivalence between the total fibre of the left square in (3.53.5) and
the fibre of L(A) → k(A)tC2 . Now, the top horizontal map of the left square in (3.53.5) induces an
equivalence on connective covers, see [KSW16KSW16, Proof of Theorem D.1], so its fibre is coconnected.
Likewise, the bottom horizontal fibre is (τ<0K(A))hC2 which is coconnected since coconnected
spectra are closed under limits in spectra. Hence, the total fibre of the left square in (3.53.5) is
coconnected. In total, it follows that the fibre modulo 2 of the map L(A) → k(A)tC2 is bounded
above and 4-periodic, hence trivial.44 Theorem CC is therefore proven. �

Corollary 3.4. The functor L descends to a functor KK→ Sp.

Proof. The arithmetic fracture square provides a pullback square of functors

L L∧2

L[ 1
2 ] L∧2 [ 1

2 ]

3We warn the reader that this object is not given by the topological version of Karoubi-invariant L-theory
sometimes denoted by L in the literature.

4In fact, the total fibre is 4-periodic integrally: This is because diagram involving L, Ltop, k(A)tC2 and K(A)tC2

is one of L(R)-modules, but for sake of shortness, we omit an argument here.



10 M. LAND, T. NIKOLAUS, AND M. SCHLICHTING

so it suffices to show that L[ 1
2 ] and L∧2 are KK-invariant. The former is a direct consequence of

the natural isomorphism between Kn(−)[ 1
2 ] and Ln(−)[ 1

2 ] (see also [LN18LN18]) and the latter follows
from Theorem CC. �

Remark 3.5. In what follows, we will crucially use different variants of the∞-categorical Yoneda
lemma. We will make these different variants explicit now. To that end, assume that C is a stable
∞-category, the relevant example for this paper is C = KK, and let c ∈ C be an object. Then
the mapping space functor MapC(c,−) : C → Spc admits an essentially unique refinement to a
limit preserving functor mapC(c,−) : C → Sp. Here, refinement means that it is equipped with a
natural equivalence Ω∞mapC(c,−) ' MapC(c,−). The spectrum mapC(c, d) is called the mapping
spectrum in C, it recovers the mapping space upon applying Ω∞.

Now we have the following versions of the Yoneda lemma (see e.g. [LN18LN18, Lemma 3.6] for
references and proofs of (11)–(33) and [Nik16Nik16] for (44)). In all instances, the natural equivalences are
induced by evaluating a natural transformation on the identity.

(1) For any functor F : C→ Spc, we have a natural equivalence

MapFun(C,Spc)(MapC(c,−), F ) ' F (c).

(2) For any finite product preserving functor F : C→ Sp≥0, we have a natural equivalence

MapFun(C,Sp≥0)(τ≥0mapC(c,−), F ) ' Ω∞F (c).

(3) For any finite product preserving functor F : C→ Ab, we have a natural isomorphism

HomFun(C,Ab)(π0mapC(c,−), F ) ' π0F (c).

(4) If C is equipped with a symmetric monoidal structure, F : C → Sp≥0 is lax symmetric
monoidal and preserves finite products and 1 is the tensor unit, then the space

MapFunlax(C,Sp≥0)(τ≥0mapC(1,−), F )

of lax symmetric monoidal transformations is contractible, i.e. there is a unique lax sym-
metric monoidal transformation τ≥0mapC(1,−)→ F . Under the identification of (22) this
corresponds to the element 1 in the algebra π0(F (1)).

In particular from (22) and (33) together, we deduce that for any finite product preserving func-
tor F : C → Sp≥0 we have a bijection between homotopy classes of natural transformations
τ≥0mapC(c,−)→ F and natural transformations π0mapC(c,−)→ π0F . This bijection is given by
taking the effect on π0 of a natural transformation, as follows from the explicit description of the
equivalences in (22) and (33). In other words: every transformation π0mapC(c,−) → π0F can be
uniquely (up to homotopy) extended to a transformation of connective spectrum valued functors.
In fact, if F were finite limit preserving then one could even extend to a natural transformation of
spectrum valued functors, by the following stable version of the Yoneda lemma, which says that
for any finite limit preserving functor F : C→ Sp we have a natural equivalence

MapFun(C,Sp)(mapC(c,−), F ) ' Ω∞F (c)

In our case of interest, the functor F will be L-theory which does not preserve finite limits (unless
one inverts 2). This is the ultimate reason why we can only produce functors from connective
K-theory to L-theory (and see Theorem 9.39.3 which implies that this is the best one can achieve).

Corollary 3.6. The functor τ≥0GWtop : KK→ Sp≥0 is canonically equivalent to k⊕ k.

Proof. From the fibre sequence

khC2
−→ GWtop −→ L

and Corollary 3.43.4, we deduce that GWtop is a KK-invariant functor. In addition, we now show that
the induced functor τ≥0GWtop : KK → Sp≥0 is excisive, i.e. sends pushout diagrams to pullback
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diagrams. For this, we consider again the pullback diagram

τ≥0GWtop τ≥0L

τ≥0khC2 τ≥0ktC2

of functors taking values in connective spectra. We wish to show that, as such τ≥0GWtop is
excisive. Note that this means that pullbacks are taken in connective spectra, so being excisive as
connective spectrum valued functor is not the same as being excisive when viewed as a spectrum
valued functor (via the canonical inclusion of connective spectra in all spectra). We now observe
that τ≥0khC2 is excisive, so it suffices to show that the fibre of the right vertical map is excisive
as well. For this, let us consider a pullback diagram of C∗-algebras

A B

A′ B′

whose vertical maps are surjections with a completely positive contractive split (any pullback
diagram in KK is the image of such a diagram e.g. by [BEL21aBEL21a, Theorem 1.4 (2) & Lemma 2.14]).
We need to show that the fibre of τ≥0L → τ≥0ktC2 sends this square to a pullback diagram of
connective spectra. We then consider the commutative square

(3.6)

L(A′)⊕L(A) L(B) L(B′)

k(A′)tC2 ⊕k(A)tC2 k(B)tC2 k(B′)tC2

both of whose horizontal cofibres are given by[
coker(k0(A′)⊕ k0(B)→ k0(B′)

]tC2
,

see [LN18LN18, Theorem 4.2] for the upper horizontal one. In fact, the proof in loc. cit. gives that the
induced map on horizontal cofibres is an equivalence, therefore diagram (3.63.6) is a pullback diagram.
Consequently, the map on vertical fibres is also an equivalence. This shows that fib(L→ ktC2) is
excisive when viewed as a spectrum valued functor, and consequently its connective cover, which
agrees with the fibre of τ≥0L→ τ≥0ktC2 , is excisive when viewed as a connective spectrum valued
functor.

We now observe that π0(GWtop(A)) is naturally isomorphic to π0(k(A) ⊕ k(A)), induced by
sending a tuple (P1, P2) of projective modules over A to the hermitian form which is the canonical
positive definite form on P1 and the canonical negative definite form on P2, see [Kar80Kar80, Theorem
2.3]. Since k is the connective cover of K, which is corepresented by R, and GWtop is product
preserving the natural transformation π0(k(A)⊕k(A))→ π0(GWtop(A)) extends to a transforma-
tion k ⊕ k → GWtop(A) which induces an isomorphism on π0, see Remark 3.53.5. Since both sides
are excisive when viewed as taking values in connective spectra, we deduce that this map induces
an isomorphism in πn for all n ≥ 0: Indeed the just described canonical transformation induces a
commutative diagram

k(ΩnA)⊕ k(ΩnA) GWtop(ΩnA)

Ωnk(A)⊕ Ωnk(A) ΩnGWtop(A)

whose vertical maps are equivalences after taking connective covers (by the established fact that
both functors are excisice with values in connective spectra). Now the upper horizontal map
induces an isomorphism on π0, consequently so does the lower horizontal map. This establishes
that k(A)⊕ k(A)→ GWtop(A) also induces an isomorphism on πn as claimed. �
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Remark 3.7. One can also give a direct argument for a natural equivalence τ≥0GWtop(A) '
k(A) ⊕ k(A), see [Kar80Kar80, Theorem 2.3] for the version on homotopy groups. Informally, the
map from right to left is obtained as follows: First, one shows that τ≥0GWtop(A) is the group
completion of the topological category Unimod(A) of unimodular hermitian forms over A, see e.g.
[Sch17Sch17, Corollary A.2]. Then one shows that the functor Proj(A)×Proj(A)→ Unimod(A), given
by sending (P1, P2) to (P1⊕P2, σ

pos⊕ σneg) is an equivalence of topological categories; here, σpos

denotes the canonical positive definite form on P1 and σneg its negative definite variant. The main
statement here is to see that the group of isometries of (P, σpos) is homotopy equivalent to the
group of isomorphisms of P ; a shadow of this fact is [Kar80Kar80, Lemma 2.9].

This perspective shows that the equivalence in fact holds more generally for C-algebras in the
sense of [Kar80Kar80, Definition 2.2], but we shall not make use of this fact in this paper.

Having this equivalence, one deduces that τ≥0GW is KK-invariant. From the fibre sequence

khC2 −→ τ≥0GWtop −→ τ≥0L

it then follows that τ≥0L, and therefore by periodicity also L, is also KK-invariant. However, this
perspective does not immediately give a proof of Theorem CC. We have decided to deduce the
description of GWtop in the way presented rather than showing the equivalence τ≥0GWtop(A) '
k(A)⊕ k(A) by hand, which might in fact be the more natural thing to do.

4. Proof of Theorem AA & BB

In this section, we prove Theorem AA and Theorem BB from the introduction. Again, we recall
the statements here for convenience. We emphasize at this point that the proofs of Theorem AA
and BB rely only on the consequence of Theorem CC that L-theory is a KK-invariant functor, not
on Theorem CC itself. In particular, Theorems AA and BB can also be derived using the argument
outlined in Remark 3.73.7. This approach makes no use of the fact that L[ 1

2 ] is KK-invariant, which
was deduced in [LN18LN18] from the fact that L is KK-invariant on complex C∗-algebras, which in turn
was proven by using that Theorem BB was known previously for complex C∗-algebras as indicated
in the introduction [Kar80Kar80, Mil98Mil98, Ros05Ros05].

Theorem 4.1. There is a unique lax symmetric monoidal transformation τ : k → ` and the
induced maps

k(A)⊗ko `(R) −→ `(A) and k(A)⊗ko L(R) −→ L(A)

are equivalences for each C∗-algebra A.

Proof of Theorem 4.14.1. Since the canonical map `(A) ⊗`(R) L(R) → L(A) is an equivalence, the
second displayed map is obtained from the first by applying the functor −⊗`(R) L(R). It therefore

suffices to prove that the first of the two displayed maps is an equivalence55

By the results of the previous section, we know that we may view L as a functor KK→ Sp. As
such, it is canonically lax symmetric monoidal, because L-theory is lax symmetric monoidal on C∗-
algebras. In other words, L is canonically an object of Alg(Fun(KK,Sp)) where algebras are formed
with respect to the Day convolution symmetric monoidal structure on Fun(KK,Sp). As such it
receives a unique algebra map from the unit, which is given by the functor mapKK(R,−) ' k.
Therefore, as in [LN18LN18] there is a unique lax symmetric monoidal transformation τ : k→ L.

We now consider the cofibre sequence

(4.1) khC2

hyp−→ τ≥0GWtop −→ τ≥0L,

see Corollary 3.33.3, and identify τ≥0GWtop with k⊕ k using Corollary 3.63.6. First, we show that the
C2-action on k is trivial: To this end we note that k is corepresented by the tensor unit R of KK
and that the action is lax symmetric monoidal, so the action is equivalently given by an action
on the tensor unit R in KK. Since the unit in any symmetric monoidal ∞-category is the initial
commutative algebra object, there is exactly one such action which is thus necessarily the trivial

5The statement that the first map is an equivalence is equivalent to the statement that the second map is an

equivalence and the statement that k(A)⊗ko τ<0L(R) is coconnected. Using the Whitehead filtration of τ<0L(R)

which has graded pieces given by Z[4k] for k ≤ −1, and the presentation Z = (ko/η)/βC one finds that k(A) ⊗ko

τ<0L(R) is indeed coconnected, so the two statements of Theorem 4.14.1 are in fact equivalent.
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action. We deduce that under the equivalence τ≥0GWtop ' k ⊕ k, the map hyp: khC2
→ k ⊕ k

can equivalently be described by a C2-equivariant map r∗(k) → r∗(k ⊕ k) where r : BC2 → ∗
is the unique map. Therefore, the map hyp is equivalently described by a map in the category
Fun(KK,Fun(BC2,Sp)) ' Fun(BC2,Fun(KK,Sp)). The Yoneda Lemma induces the fully faithful
inclusion

Fun(BC2,KKop) −→ Fun(BC2,Fun(KK,Sp))

and the map hyp is a map between objects in the image. Therefore, the map hyp in the fibre
sequence (4.14.1) is uniquely determined by the associated element of

Map(BC2,Ω
∞(ko⊕ ko))

corresponding to hyp(R) evaluated on the element 1 ∈ Ω∞(ko). Similarly, we consider the map

k(A)⊗ko kohC2

k(A)⊗kohyp(R)−−−−−−−−−−→ k(A)⊗ko (ko⊕ ko) .

Source and target are canonically equivalent to source and target of our map hyp and thus this
map is also determined by an element in the space Map(BC2,Ω

∞(ko⊕ko)). By construction these
two elements in this space agree, since for A = R, the two maps under investigation agree. So we
deduce that the map hyp(A) identifies with the map idk(A)⊗ko hyp(R). Therefore, we deduce that

`(A) = cofib(hyp(A)) = k(A)⊗ko cofib(hyp(R)) = k(A)⊗ko `(R)

as claimed. To see that the map is the one we claimed, it suffices to note that the induced map

k(A) −→ k(A)⊗ko `(R)
'−→ `(A)

is natural in A and for A = R agrees with the map τR : ko→ `(R). �

Remark 4.2. Let us consider the following commutative diagram

(4.2)

k k⊕ k k

khC2
τ≥0GWtop `

∆ 	

' τ̂

hyp

where the left vertical map is is the canonical projection map and the middle vertical map is the
equivalence of Remark 3.73.7. As a consequence, the (induced) map ∆ is indeed the diagonal map.
We obtain a canonical map τ̂ induced on horizontal cofibres. Now we may consider the composite

k
(id,0)−→ k⊕ k

'−→ τ≥0GWtop

considered as a map from the top right term in the above diagram. This map has the following
interpretation: It arises by observing that k(A) can be described as the K-theory of the topolog-
ical category of positive definite forms on projective A-modules. The canonical inclusion to the
category of all unimodular forms then induces the map k→ τ≥0GWtop just explained. With this
interpretation, one sees that this map is canonically a lax symmetric monoidal transformation.
Using that also the map GWtop → L is lax symmetric monoidal, see [CDH+22CDH+22] for a general
statement along these lines, we find that the composite

k→ τ≥0GWtop → `

on the one hand agrees with τ̂ (by construction) and is canonically lax symmetric monoidal. By
the uniqueness part of Theorem 4.14.1, we deduce that τ̂ = τ . By expanding out vertical (co)fibres
of diagram (4.24.2), we find that ` is described as the cofibre of a transformation

k̃hC2 −→ k

where the tilde denotes reduced C2-orbits, i.e. the cofibre of the projection map k → khC2 . This

transformation is, similarly as before, determined by its induced map k̃ohC2
→ ko. A natural

guess is that this map is given as follows. We recall that the C2-action on ko is trivial, so that the
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above map is equivalently described by a map BC2 → End(ko), landing in the component of the
zero map. We can then consider the canonical map

BC2 −→ gl1(ko) ⊆ End(ko)

which lands in the component of the identity, and shift it to the component of the zero map using
the additive structure on End(ko). We note that precomposing this map with the canonical map
BZ→ BC2, we obtain a map Σko→ ko which is given by the multiplication by η. This would be
compatible with the discussion at the end of this section, but we refrain from attempting to prove

that the map k̃ohC2
→ ko is indeed given by this construction.

Next, we aim to prove Theorem BB from the introduction. Following standard topological
notation we write KSp = K(H) for the topological K-theory spectrum of the quaternions and
denote by ksp its connective cover. As a further preparation we denote by η̃ : Σko/2 → ko a ko-
linear extension of the η-multiplication map η : Σko → ko to Σko/2. Such an extension exists as
2η = 0, but is not unique.66 Regardless which extension is chosen, we have the following symplectic
analogue of Wood’s theorem – recall that Wood’s theorem states that cofib(η) = ku or equivalently
that the cofibre of the periodic version η : ΣKO→ KO is KU. For a proof of Wood’s theorem see
[Mat15Mat15, Theorem 3.2], but note that the argument was cut from the published version [Mat16Mat16].

Lemma 4.3. There is an equivalence cofib(η̃) ' ksp.

Proof. Since KSp ' Σ4KO, we may equivalently show that there is a fibre sequence

ΣKO/2
η̃−→ KO −→ Σ4KO.

We will deduce this from the periodic version of Wood’s theorem. To this end, consider the
commutative diagram

ΣKO 0 Σ2KO

ΣKO KO KU

ΣKO/2 KO C

·2
η c

id

η̃

where C = cofib(η̃). The upper left square is filled by the choosen nullhomotopy of 2η and the map
c : KO→ KU is the complexification map that sends 1 to 1. The vertical and horizontal sequences
are all fibre sequences, the middle horizontal one by Wood’s theorem, the rest by definition.
The right vertical sequence is obtained from the left part of the diagram by forming horizontal
cofibres. In particular we see that C is the cofibre of the map Σ2KO 99K KU. By construction,
this map is KO-linear, since all maps and homotopies in the diagram are KO-linear. Thus the
map is determined by its value on the generator 1 ∈ π2(Σ2KO) = π0(KO). By looking at the long
exact sequences associated to the horizontal fibre sequences we see that this generator is sent to
a generator in π2(KU) ∼= Z. Thus (after postcomposing with the invertible and KO-linear map
given by multiplication with this generator) the map Σ2KO 99K KU is equivalent to Σ2 of the
complexification map c : KO → KU. By another application of Wood’s theorem, we deduce that
the cofibre C is given by Σ4KO as needed. �

Corollary 4.4. There is a ko-linear map ksp → `(R) which induces an isomorphism on π0 and
consequently an equivalence τ≤3ksp ' τ≤3`(R) on Postnikov 3-truncations.

Proof. Since the canonical map ko → ksp induced by the map R → H is a π0 isomorphism, any
extension of τ : ko→ `(R) along ko→ ksp is also a π0 isomorphism. Therefore, by Lemma 4.34.3, it
suffices to show that the composite

Σko/2
η̃−→ ko

τ−→ `(R)

6Up to homotopy, there are two extensions since π2(ko) = Z/2.
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is ko-linearly null-homotopic. But we have

Mapko(Σko/2, `(R)) ' Mapko(Σko,Ω`(R)/2) ' Ω∞+2`(R)/2

which is connected. The final equivalence on 3-truncations follows because both spectra have
π1 = π2 = π3 = 0. �

We are now ready to prove Theorem BB from the introduction, which we state here in a form
better suited for describing the comparison map τ on homotopy groups in all non-negative degrees,
see Proposition 5.15.1. We denote by K∗(A)[η] the η-torsion of K∗(A), that is, the kernel of the
map K∗(A) → K∗+1(A) given by multiplication by η. The cokernel of this map is denoted by
K∗+1(A)/η.

Theorem 4.5. Let A be a C∗-algebra. For all n ∈ Z, there are canonical and natural isomorphisms

(1) L4n(A) ∼= K8n(A),
(2) L4n+1(A) ∼= K8n+1(A)/η,
(3) L4n+2(A) ∼= K8n+6(A)[η], and
(4) L4n+3(A) ∼= K8n+7(A).

Proof. First, we note that it suffices to prove the theorem for n = 0, as the L-groups are naturally
4-periodic and the K-groups are naturally 8-periodic. Moreover, we note that the periodicity
generators b ∈ L4(R) and βR ∈ K8(R) are canonical (not only up to sign), for instance because
they are determined by squares in L4(C) and K8(C) respectively.77 Using the presentation `(A) '
k(A) ⊗ko `(R) obtained in Theorem AA and Corollary 4.44.4 we deduce that the map ksp → `(R)
induces the equivalence

τ≤3

(
k(A)⊗ko ksp

) '−→ τ≤3`(A).

We now utilise that k(A) = τ≥0K(A) is the connective cover of a KO-module and proceed with
the following general observation. We let M be a KO-module and are then interested in the low
degree homotopy of the ko-module

(τ≥0M)⊗ko ksp.

From the fibre sequence Σko/2→ ko→ ksp obtained in Lemma 4.34.3, we deduce that

(1) π0(τ≥0M ⊗ko ksp) ∼= π0(M), and

(2) π1(τ≥0M ⊗ko ksp) ∼= coker(π0(M)
η→ π1(M)).

To calculate π2 and π3, we consider the following diagram of horizontal and vertical fibre sequences

Σ(τ≥0M)/2 τ≥0M τ≥0M ⊗ko ksp

ΣM/2 M M ⊗KO KSp

Σ(τ<0M)/2 τ<0M C

from which we deduce that πi(C) = 0 for i ≥ 3 and that

π2(C) ∼= π1(Σ(τ<0M)/2) ∼= π−1(M)[2].

In addition, we note that KSp ' Σ4KO. We therefore have a fibre sequence

τ≥0M ⊗ko ksp −→ Σ4M −→ C

whose long exact sequence on homotopy groups reveals that π3(τ≥0M ⊗ko ksp) ∼= π3(Σ4M) ∼=
π−1M and that there is an exact sequence

0 −→ π2(τ≥0M ⊗ko ksp) −→ π−2(M) −→ π−1(M).

7Indeed, there are ring maps L(R) → L(C) and ko → ku, sending b to b2C and βR to β4
C, respectively, for any

choice of generators bC ∈ L2(C) and βC ∈ K2(C).
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Here, we have used that π2(C) ⊆ π−1(M). The latter map in this exact sequence is a natural
transformation of functors π−2 → π−1 on KO-modules, and is therefore either trivial or the η-
multiplication. We claim that it is the η-multiplication, which then shows the theorem.

The claim is equivalent to the statement that the map

π2(τ≥0M ⊗ko ksp) −→ π−2(M)

appearing above is in general not an isomorphism. Therefore, it suffices to find an example of a
KO-module M where π−2(M) 6= 0 but π2(τ≥0M ⊗ko ksp) = 0. First, we note that there is an
isomorphism

π2(τ≥0M ⊗ko ksp) ' π2(τ[0,2]M ⊗ko Z)

Choosing M = KO[−3], we find π[0,2]M = Z[1], so that

π2(τ[0,2]M ⊗ko Z) ∼= π1(Z⊗ko Z) = 0,

in fact, since Z ' (ko/η)/βC, we have Z ⊗ko Z ' (Z/η)/βC ' Z ⊕ Σ2Z ⊕ Σ3Z ⊕ Σ5Z since η and
βC are zero on Z. However, π−2(M) = π1(KO) 6= 0, so the claim is shown. �

We end this section with the following perspective on the map k(A)⊗ko ksp→ `(A) which was
used in the proof of Theorem 4.54.5. Namely, as a consequence of Theorem 4.14.1 and Lemma 4.34.3, there
is a commutative diagram

Σk(A)/2 k(A) k(A)⊗ko ksp

˜k(A)hC2
k(A) `(A)

and the fact that the right vertical map induces an equivalence of 3-truncations can be used to
show that the cofibre of the left most vertical map is 3-connective with π3 given by k0(A)/2. Since

this map is obtained from the map ΣS/2→ S̃hC2
upon applying the functor −⊗ k(A), this result

also follows from the following lemma.

Lemma 4.6. There is a map ΣS/2 → Σ∞BC2 whose cofibre is 3-connective with π3 isomorphic
to Z/2.

Proof. First, we recall the low dimensional homotopy groups of S/2 and Σ∞BC2: We have that
π0(S/2) = Z/2, π1(S/2) = Z/2 and π2(S/2) = Z/4. In addition, the η-multiplications

π0(S/2) −→ π1(S/2) −→ π2(S/2)

are injective, as follows from comparing with S along the canonical map S→ S/2. Now, according
to [Liu63Liu63], we have π1(Σ∞BC2) = Z/2, π2(Σ∞BC2) = Z/2 and π3(Σ∞BC2) = Z/8. The Atiyah–
Hirzebruch spectral sequence then shows that the map ΣS = Σ∞BZ → Σ∞BC2 induces the
projection on π1 an isomorphism on π2 and an injection on π3. In particular, this map descends
to a map ΣS/2→ Σ∞BC2 and the induced map then induces an isomorphism on π0 and π1. On
π3, the composite ΣS→ ΣS/2→ Σ∞BC2 identifies with

Z/2 −→ Z/4 −→ Z/8
where the composite is the non-trivial map. It follows that Z/4→ Z/8 must be injective as claimed.
This calculation also shows that the cofibre of the map ΣS/2 → Σ∞BC2 has π3 isomorphic to
coker(Z/4 ⊆ Z/8) ∼= Z/2 as claimed. �

5. Algebraic structure of L∗(−)

In this section we will describe the algebraic structure on the L-theory groups under the iso-
morphisms obtained in Theorem 4.54.5 and compare our results to previously known results. We will
freely use the isomorphisms of Theorem 4.54.5 which identifies all L-groups.

Recall that the homotopy groups KO∗ = K∗(R) are 8-periodic with the (invertible) real Bott
element βR in degree 8. We fix the generator x ∈ K4(R) ∼= Z whose complexification is 2β2

C and
recall the relations x2 = 4βR and ηx = 0.
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Proposition 5.1. For a C∗-algebra A, the map τA : k(A)→ `(A) induces the following maps on
homotopy groups πn for n ≥ 0:

(2x)n : K4n(A) −→ K8n(A) ∼= L4n(A)

(2x)n : K4n+1(A) −→ K8n+1(A)/η ∼= L4n+1(A)

(2x)n · x : K4n+2(A) −→ K8n+6(A)[η] ∼= L4n+2(A)

(2x)n · x : K4n+3(A) −→ K8n+7(A) ∼= L4n+3(A) .

Remark 5.2. In particular, in degree 8n and 8n + 1 the map under investigation is given by
multiplication by 16n, up to Bott periodicity isomorphisms. Since the map K4(R)→ K4(C) sends
x to 2β2

C, Proposition 5.15.1 also shows that for complex C∗-algebras, the map induces multiplication
by 2n on π2n and π2n+1. This was previously obtained in [LN18LN18, Theorem 4.1] and we shall make
use of this fact below.

Proof of Proposition 5.15.1. We note that the assignment A 7→ Kn(A) viewed as a functor KK→ Ab
is corepresented by an n-fold shift (i.e. suspension) of R, which we denote by R[n]. Therefore, the
Yoneda lemma for product preserving functors KK → Ab implies that natural transformations
Kn → Ln are in 1-1 correspondence to classes in Ln(R[n]). By Theorem BB, this group is isomorphic
to K0(R) = Z and K4(R) = Z{x} when n ≡ 0, 1, 6, 7 mod 8 and n ≡ 2, 3, 4, 5 mod 8, respectively.
We deduce that maps Kn(A)→ Ln(A) have to be given by multiplication with a multiple of x or a
multiple of 1 (under the respective identifications depending on n described above). From the case
of complex C∗-algebras as discussed in Remark 5.25.2, we immediately deduce the precise form of the
multiple: we simply note that for a complex C∗-algebra A the element x acts as 2β2

C. Therefore,
(2x)n acts as 22n, and (2x)n · x acts as 22n+1. Therefore, the formulas described in the statement
of Proposition 5.15.1 are correct for complex C∗-algebras (this is the content of Remark 5.25.2), and
hence by the above analysis in general. �

Next, we want to explain how the lax symmetric monoidal structure on L∗(−) is described in
terms of the lax symmetric monoidal structure on K∗(−) under the isomorphisms provided by
Theorem B. To state the result we have to describe the maps

Li(A)⊗ Lj(B) −→ Li+j(A⊗B)

for i, j = 0, 1, 2, 3 mod 4 as everything is multiplicatively 4-periodic. By graded symmetry, it is
enough to do this for 0 ≤ i ≤ j ≤ 3. We denote the lax symmetric monoidal structure of K-theory
as

Ki(A)⊗Kj(B) −→ Ki+j(A⊗B) (a, b) 7→ a ∗ b

and the induced KO∗ = K∗(R)-module structure on K∗(A) by the multiplication sign.

Proposition 5.3. Under the isomorphisms of Theorem 4.54.5 the exterior multiplication maps on
the L-groups are maps of the following kind.

(1) K8n(A)⊗K8m(B) −→ K8n+8m(A⊗B)
(2) K8n(A)⊗K8m+1(B)/η −→ K8n+8m+1(A⊗B)/η
(3) K8n(A)⊗K8m+6(B)[η] −→ K8n+8m+6(A⊗B)[η]
(4) K8n(A)⊗K8m+7(B) −→ K8n+8m+7(A⊗B)
(5) K8n+1(A)/η ⊗K8m+1(B)/η −→ K8n+8m+6(A⊗B)[η]
(6) K8n+1(A)/η ⊗K8m+6(B)[η] −→ K8n+8m+7(A⊗B)
(7) K8n+1(A)/η ⊗K8m+7(B) −→ K8n+8m+8(A⊗B)
(8) K8n+6(A)[η]⊗K8m+6(A)[η] −→ K8n+8m+8(A⊗B)
(9) K8n+6(A)[η]⊗K8m+7(A) −→ K8n+8m+9(A⊗B)/η

(10) K8n+7(A)⊗K8m+7(A) −→ K8n+8m+14(A⊗B)[η]

For a belonging to the left tensor factor and b belonging to the right tensor factor, these maps are
given by the following formulas:
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K8m(B) K8m+1(B)/η K8m+6(B)[η] K8m+7(B)
K8n(A) a ∗ b a ∗ b a ∗ b a ∗ b
K8n+1(A)/η x · (a ∗ b) a ∗ b 2(a ∗ b)
K8n+6(A)[η] x

2βR
(a ∗ b) x

2βR
(a ∗ b)

K8n+7(A) 2(a ∗ b)

Here, the abusive term x
2βR

(a∗ b) denotes an element depending naturally on a and b and whose

multiplication with 2 is given by x
βR

(a∗ b). Part of the statement is the claim that there is a unique

such element.

Proof. We take a step back again and recall that the exterior multiplication maps on L-theory are
natural transformations

Li ⊗ Lj → Li+j .

If i and j are 0 or 3 modulo 4, then the L-groups are isomorphic to K-groups and thus the
source Li ⊗ Lj is corepresentable by shifts of R (on the category hKK ⊗ hKK whose objects are
pairs of C∗-algebras and whose hom abelian groups are the tensor products of the hom abelian
groups in hKK). Consequently, the exterior multiplication Li ⊗ Lj → Li+j is given by an element
in Li+j(R[m]) for appropriate m. This group is isomorphic to K0(R) = Z and K0(R)[η] = 2Z
(depending on the precise values of i and j) so that in these cases the multiplication has to be
given by a multiple of a ∗ b and 2(a ∗ b), respectively. Using that the map of Proposition 5.15.1 is
to be compatible with external products, we immediately get the desired multiples. This proves
cases (1), (4), and (10).

By Theorem BB and the remark following Theorem BB in the introduction, we have natural
surjections K1(A) → L1(A) and K0(AC) → L2(A). The functor A 7→ K0(AC) is corepresentable
by C and the functor A 7→ K1(A) by R[1]. We deduce that for any values of i and j we have
a surjection Fi(A) ⊗ Fj(A) � Li(A) ⊗ Lj(A) where Fi and Fj are corepresentable. Any natural
transformation with source Li ⊗ Lj is then uniquely determined by its restriction to Fi ⊗ Fj .
Computing natural transformations Fi ⊗ Fj → Li+j the resulting groups are given by

K0(R),K0(C),K4(R),K0(C⊗R C).

Using again that the comparison map τ is compatible with external products and Proposition 5.15.1,
we obtain cases (2), (3), (5), (6), and (7). It remains to treat case (8) and (9). We shall argue case
(8) and leave the details of case (9) to the reader. We consider the following diagram of natural
transformations

K2(AC)⊗K2(BC) K2(A)⊗K2(B) K4(A⊗B)

K6(AC)⊗K6(BC) K6(A)[η]⊗K6(B)[η] K8(A⊗B)

u⊗u

x⊗x x⊗x 2x

u⊗u m

the left diagram commutes because the forgetful map u : K(AC)→ K(A) is KO-linear. The right
diagram commutes because the vertical maps are induced by τ , see Proposition 5.15.1, and τ is
compatible with exterior multiplications. The lower right horizontal map m is the one we wish to
describe as m(a, b) = x

2βR
(a ∗ b). Since the lower left horizontal arrow is surjective, it suffices to

show that the equality holds after precomposing with this surjective map. Doing this, both terms
are natural transformations which, by corepresentability of the source, are given by elements of
K0(C⊗ C). Since this group is torsion free, we may equivalently show that

16m(u(a), u(b)) = 8x
βR

(u(a) ∗ u(b))

where a ∈ K6(AC) and b ∈ K6(BC). Using the above commutative diagram, and the fact that the
on the K-theory of complex C∗-algebras, x acts via 2β2

C, we see that

4m(u(a), u(b)) = 2x · (u(β−2
C a) ∗ u(β−2

C b))

so it suffices to show that

4βR · (u(β−2
C a) ∗ u(β−2

C b)) = 4(u(a) ∗ u(b)).
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This follows from the facts that 4βR = x2, −∗− is KO-bilinear, u is KO-linear, and that xa = 2β2
Ca

as already used earlier. Case (9) can be shown by a similar argument. �

Remark 5.4. In this remark, we collect what was previously known about the L-groups of C∗-
algebras.

(1) There is a canonical signature-type isomorphism L0(A)→ K0(A), see e.g. [Ros05Ros05, Theorem
1.6].

(2) There are canonical isomorphisms Kn(A)[ 1
2 ] ∼= Ln(A)[ 1

2 ], see [Ros05Ros05, Theorem 1.11] and

[LN18LN18] for the more general statement that there is a canonical equivalence K[ 1
2 ] ' L[ 1

2 ]
of spectrum valued functors.

(3) For a unital real C∗-algebra A, there is a canonical surjection K1(A) → Lh1 (A) whose
kernel is generated by the image of K1(R) → K1(A), see [Ros05Ros05, Theorem 1.9]. Here, Lh

refers to free L-theory. We give a new proof of this presentation of Lh1 (A) in Corollary 5.85.8
below. With the arguments used there, an observation about the Rothenberg sequence for
C∗-algebras [Ros05Ros05, Remark 1.7], and some additional work, one can in fact conversely
recover an isomorphism L1(A) ∼= K1(A)/η for any C∗-algebra A.

To the best of our knowledge, no conjectural relation between Ln(A) and Kn(A) has been made
for n ≥ 2 without inverting 2. We also note that, by construction, the isomorphism in (1) is the
inverse of the canonical isomorphism induced by the map τ of Theorem AA.

We will now also comment how our results imply statements about the higher free L-groups of
unital C∗-algebras and in particular reprove part (3) above in Corollary 5.85.8. First, we describe
the free L-theory of a unital C∗-algebra as follows. We recall that SA = C0((0, 1);A) denotes the
C∗-algebraic suspension of the algebra A and note that S descends to the loop functor on the
stable ∞-category KK.

Proposition 5.5. Let A be a unital C∗-algebra. There is a canonical fibre sequence

ΣL(SA) −→ Lh(A) −→ C(A)tC2

where C(A) = ker(K0(A)→ K̃0(A)) = Im(K0(R)→ K0(A)) is a cyclic group.

Proof. By [LN18LN18, Proposition 4.6] and the Rothenberg sequence for Lh(−) and L(−) [Ran80Ran80, §9],
we have a commutative diagram of fibre sequences (the left vertical dashed map is the one induced
from the right solid square)

(5.1)

ΣL(SA) L(A) K0(A)tC2

Lh(A) L(A) K̃0(A)tC2

from which the proposition follows immediately. �

The following is an amusing consequence.

Corollary 5.6. Suppose A is a unital C∗-algebra in which the element [A] ∈ K0(A) has odd
order88. Then the map ΣL(SA)→ Lh(A) is an equivalence.

Proof. The element [A] ∈ K0(A) generates the kernel of the map K0(A)→ K̃0(A). Therefore, un-
der the assumptions of the corollary, C(A) is a finite group of odd order, so its C2-Tate cohomology
vanishes. �

We then investigate the long exact sequence associated to the fibre sequence of Proposition 5.55.5.
To do so, we first analyse the top horizontal fibre sequence in diagram (5.15.1) and recall that, since

the C2-action on K0(A) is trivial99, we have Ĥev(C2; K0(A)) ∼= K0(A)/2 and Ĥodd(C2; K0(A)) ∼=
K0(A)[2].

8e.g. A = OR
2n.

9any finitely generated projective A-module P admits a positive definite unimodular form, giving an isomorphism
from P to P∨. See also the proof of Theorem 4.14.1 for the triviality of the C2-action on the spectrum k(A).
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Proposition 5.7. Under the isomorphisms provided by Theorem BB, the natural maps Ln(A) →
πn(K0(A)tC2) appearing in the long exact sequence associated to the top horizontal fibre sequence
of diagram (5.15.1) are the following ones:

(1) the projection K0(A)→ K0(A)/2 for n ≡ 0 mod 4,
(2) the trivial map K1(A)/η → K0(A)[2] for n ≡ 1 mod 4,
(3) the unique, non-trivial natural map K6(A)[η]→ K0(A)/2 for n ≡ 2 mod 41010 , and
(4) the multiplication by η map K7(A)→ K0(A)[2] for n ≡ 3 mod 4.

Proof. First, we note that all maps appearing are natural in A. Next, we recall that the map
under consideration is the composite of the natural transformations L→ Kalg(−)tC2 → K0(−)tC2 ,
both of which are canonically lax symmetric monoidal transformations. We deduce that the map
under consideration is 4-periodic (since everything is a module over L(R)), hence it suffices to
treat the cases n = 0, 1, 2, 3. The case n = 0 follows from a direct inspection. The case n = 1 is
obtained by considering the natural maps

K1(A) −→ K1(A)/η −→ K0(A)[2] ⊆ K0(A)

and observing that any such natural map is given by multiplication by an element of K−1(R) = 0.
Since the first map above is surjective and the last map is injective, the middle map is trivial as
claimed. The case n = 2 is obtained by noting that the composite

K6(AC) −→ K6(A)[η] −→ K0(A)/2

is again natural and the first map is surjective by the generalised Wood sequence discussed in the
remark following Theorem BB. Furthermore, as before, the source is, as a functor inA, corepresented
by C. Therefore, natural such maps are given by an element in K0(C)/2 = Z/2. It then suffices
to show that the map under investigation is not trivial. This follows from the case of complex
C∗-algebras: The 2-periodicity of L-theory for complex C∗-algebras indeed shows that this map
identifies with the map for n = 0 which is non-trivial by the first part. This construction also
shows that the description given in footnote 5 is correct: the map K6(AC) → K0(A)/2 given
by the non-trivial element K0(C)/2 = Z/2 factors as K6(AC) → K0(AC) → K0(A) → K0(A)/2
since the element in K0(C)/2 lifts through the induced maps K0(CC)→ K0(C)→ K0(C)/2 in the
prescribed manner.

Finally, the case n = 3 must, by the same reasoning as earlier, be given by multiplication with a
2-torsion element of K1(R) = Z/2{η}. It then suffices to know that this map is non-trivial, which
follows from considering the algebra A = SR. �

Corollary 5.8. Let A be a unital C∗-algebra. Then

(1) there is a canonical isomorphism Lh1 (A) ∼= K1(A)/〈η〉, and
(2) there is a canonical isomorphism Lh3 (A) ∼= K7(A)×K8(A) C(A), where the maps appearing

in the pullback are given by the η multiplication K7(A) → K8(A) and the canonical map
C(A)→ K0(A) ∼= K8(A).

Proof. To prove part (1), we consider the following diagram

C(A)/2 L0(SA) Lh1 (A) C(A)[2]

L2(A) K0(A)/2 L0(SA) L1(A) K0(A)[2] L−1(SA)

0

η

and note first that L0(SA) ∼= K1(A) by Theorem BB. Then we observe that the right most ver-
tical arrow is injective, simply because C(A) → K0(A) is. Furthermore, the right most bottom
horizontal arrow is injective, see [Ros05Ros05, Remark 1.10] and the argument used in the proof of
[LN18LN18, Proposition 4.6] via diagram (1) therein. It follows that the right most top horizontal
arrow is trivial, so that Lh1 (A) is a natural quotient of K1(A). To see which precise quotient it

10The assertion is that there is exactly one such natural map. An explicit description can be given as follows:

lift an element in K6(A)[η] to an element in K6(AC) along the ‘forgetful’ map K∗(AC) → K∗(A). Then multiply
the lift with β−3 to obtain an element in K0(AC) and apply the forgetful map followed by the mod 2 reduction.
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is, we observe again by naturality, that the second to left most bottom horizontal arrow is given
by multiplication by η: It is either that or trivial, and the case of A = R shows that the map is
non-trivial since L2(R) = 0.

To prove part (2), we consider the same exact sequences shifted in the appropriate degrees:

L2(SA) Lh3 (A) C(A)[2] ⊆ C(A)

L4(A) K0(A)/2 L2(SA) L3(A) K0(A)[2] ⊆ K0(A)0

where the left most bottom arrow is surjective by Proposition 5.75.7. Consequently, the map Lh3 (A)→
L3(A) is injective. The claim then follows from the isomorphism L3(A) ∼= K7(A) of Theorem 4.54.5
and the fact established in Proposition 5.75.7 under this isomorphism, the map L3(A) → K0(A)
appearing in the above diagram as the right most bottom horizontal map is given by multiplication
by η. �

Finally, we say as much as we can about Lh2 (A):

Proposition 5.9. Let A be a unital C∗-algebra. Then there is an exact sequence

C(A)[2] −→ K2(A)/η
x̃−→ Lh2 (A) −→ C(A)/2

η−→ K1(A)

where x̃ is a map whose composition with the canonical map Lh2 (A)→ L2(A) ∼= K6(A)[η] is given
by multiplication by x.

Proof. We inspect the long exact sequence associated to the fibre sequence of Proposition 5.55.5 and
use that L1(SA) ∼= K2(A)/η and L0(SA) ∼= K1(A) by Theorem 4.54.5. To see the claim about the
composite of x̃ with the map Lh2 (A) → L2(A) ∼= K6(A)[η], we note that again by naturality, this
composite is given by a multiple of the x multiplication. The case A = C then shows the claim. �

Remark 5.10. The sequence of Proposition 5.95.9 can of course simplify: For instance, if C(A) has
odd order, or when C(A)[2] = 0 and 0 6= η ∈ K1(A), we find that Lh2 (A) ∼= K2(A)/η.

Remark 5.11. The map C(A)[2]→ K2(A)/η appearing in the sequence of Proposition 5.95.9 picks
out a particular element of the target (recall that C(A)[2] is either cyclic of order 2 or trivial).
Under the isomorphism

K2(A)/η ∼= ker
(
K0(AC)→ K0(A)

)
induced by the Wood sequence, this element is given by the composite

C(A)[2] −→ K0(A)[2] −→ ker(K0(AC)→ K0(A))

where we claim that the latter map is induced the canonical map K0(A)→ K0(AC) (which, when
restricted to 2-torsion lands in the indicated kernel since the composite K0(A)→ K0(AC)→ K0(A)
is given by multiplication by 2). Indeed, this map induces a natural map

K1(A/2) −→ K0(A)[2] −→ ker(K0(AC)→ K0(A)) ⊆ K0(AC)

which in turn determines the map in question, since the first map is surjective. This composite is
determined by an element of K0(C/2) ∼= Z/2, since the source is corepresented by R/2. It then
suffices to note that the map in question and the proposed map are both natural and non-trivial.
To see that the map C(A)[2] → K2(A)/η appearing in Proposition 5.95.9 is non-trivial, we can

consider the case A = OC
3 . It satisfies K0(A) = Z/2 and K̃0(A) = 0. In particular C(A) = Z/2 and

the map Lh(A) → L(A) is an equivalence. Since K1(A) = 0 we deduce that L1(A) ∼= Lh3 (A) = 0.
This shows that the map C(A)[2] → K2(A)/η is injective (and therefore in fact bijective). The
same example also shows that the map K0(A)[2] = K0(A)→ K0(AC) is non-trivial: Indeed, since
A is complex there is an isomorphism AC ∼= A × A under which the map from A corresponds to
the diagonal.
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Remark 5.12. Finally, we explain that for a unital C∗-algebra A, the map τ : k(A) → L(A),
on positive homotopy groups factors canonically through the canonical map Lh(A) → L(A). In-
deed, we shall argue that there is a canonical map kfree(A) → Lh(A), where kfree(A) denotes the
group completion of the topological category of free A-modules, participating in the following
commutative diagram.

kfree(A) Lh(A)

k(A) L(A)

The left vertical map is induced by the canonical inclusion of free into projective modules and
induces an equivalence on connected covers. Indeed, there is a commutative diagram

kfree(A) GWfree
top (A) Lh(A)

k(A) GWtop(A) L(A)

where the maps from K-theory to Grothendieck–Witt theory equip a module over A with its
unique positive definite form as described earlier.

Under the isomorphisms of Corollary 5.85.8, the map kfree → Lh on low homotopy groups is then
given as follows:

(1) the canonical projection K1(A)→ K1(A)/〈η〉 ∼= Lh1 (A),

(2) the map K2(A)→ K2(A)/η
x̃→ Lh2 (A) where x̃ is as in Proposition 5.95.9, and

(3) the map K3(A)→ K7(A)×K8(A) C(A) ∼= Lh3 (A) given by the x-multiplication – note that
ηx = 0, so the x multiplication on K3 indeed has image in the claimed subgroup of K7(A).

6. Examples

In this section, we present a number of examples where we calculate L-groups of C∗-algebras.
We note here, that due to the fact that the (graded) cohomological dimension of π∗(L(R)) is 1, an
L(R)-module spectrum is (non-canonically) determined by its homotopy groups. Below, we shall
therefore concentrate on calculating L-groups, and sometimes construct in addition canonical fibre
sequences describing the L-spectrum. To do so efficiently, we begin with the following lemma.

Lemma 6.1. We have a canonical equivalence Z⊗ko L(R) ∼= L(C)/2.

Proof. There is a canonical fibre sequence Σ2ku
β→ ku −→ Z. Therefore, applying −⊗ko L(R) and

Theorem AA, there is a canonical fibre sequence

Σ2L(C)
2bC−→ L(C) −→ Z⊗ko L(R),

where bC ∈ L2(C) ∼= Z denotes the generator such that τ(β) = 2bC, see [LN18LN18, Lemma 4.9]. Since
bC is invertible in L∗(C), the lemma follows. �

Example 6.2. Let A be a complex C∗-algebra. Then

L(A) ' k(A)⊗ko L(R) ' k(A)⊗ku ku⊗ko L(R) = k(A)⊗ku L(C).

Furthermore, we recover that L0(A) ∼= K0(A) and L1(A) ∼= K1(A), since η is trivial on ku-modules.

Example 6.3. We have ΣnL(R)
'→ L(R[n]) for 0 ≤ n ≤ 3. Here, the notation A[n] refers to

the n-fold suspension of A in the stable ∞-category KK; we again note that this construction
is implemented by an appropriate C∗-algebraic suspension, that is, A[−1] is represented by SA.
Indeed, the example follows from the fibre sequence

ΣL(A[−1]) −→ L(A) −→ K0(A)tC2

obtained in [LN18LN18, Prop. 4.6] and the fact that Kn(R) = 0 for n = 5, 6, 7. We note that the proof
of [LN18LN18, Prop. 4.6] applies verbatim to real C∗-algebras, now that we know that L-theory factors
through KK also for real C∗-algebras.
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Example 6.4. Let H be the quaternions. Then we have k(H) = ksp ' τ≥0Ω4ko, and hence
`(H) ' ksp⊗ko `(R). Consequently, the L-groups are given by

(1) L0(H) = K0(H) ∼= Z,
(2) L1(H) = coker(K0(H)→ K1(H)) = coker(Z→ 0) = 0,
(3) L2(H) = ker(K6(H)→ K7(H)) = ker(Z/2→ 0) = Z/2, and
(4) L3(H) = K7(H) = 0.

In addition, from the fibre sequence Σ4ko→ ksp→ Z and Lemma 6.16.1, we obtain a canonical fibre
sequence

L(R) −→ L(H) −→ L(C)/2,

where the first map classifies 2 times a generator of L0(H).

Example 6.5. Since H ' R[4] in KK, we have already determined L(R[n]) for 0 ≤ n ≤ 4. In
addition, similarly as in Example 6.36.3, we have that ΣL(H) ' L(H[1]) ' L(R[5]) since K3(R) = 0.
Since R[n] ' R[n+ 8] in KK by real Bott periodicity, we shall now also calculate the L-groups of
the remaining shifts of R, namely R[6] and R[7]. Here, we find

(1) L0(R[6]) = Z/2 and L0(R[7]) = Z/2,
(2) L1(R[6]) = 0 and L1(R[7]) = 0,
(3) L2(R[6]) = Z and L2(R[7]) = 0, and
(4) L3(R[6]) = Z/2 and L3(R[7]) = Z.

Example 6.6. As spectra, there is an equivalence L(C[1]) ' ΣL(C). However, the canonical map
ΣL(C)→ L(C[1]) is not an equivalence, as follows again from [LN18LN18, Proposition 4.6]: its cofibre
is given by ZtC2 . In other words, the canonical map identifies with the times 2 map on ΣL(C).

Example 6.7. Consider the algebra C(T) of continuous real valued functions on the circle. Then
we have an equivalence in KK given by C(T) = R ⊕ R[−1]. From this, the fact that L-theory
preserves products, and Example 6.56.5 we obtain the following L-groups.

(1) L0(C(T)) = Z⊕ Z/2,
(2) L1(C(T)) = 0,
(3) L2(C(T)) = 0,
(4) L3(C(T)) = Z.

Example 6.8. Let G be a torsion-free group for which the Baum–Connes conjecture holds. Then
we get

(1) L0(C∗rG) = KO0(BG),
(2) L3(C∗rG) = KO−1(BG),

By Anderson duality, this shows that one can recover the abelian group KO4(BG) from L∗(C
∗
rG).

Indeed, there is a short exact sequence

0 −→ Ext1
Z(KO−1(BG),Z) −→ KO4(BG) −→ HomZ(KO0(BG),Z) −→ 0

which splits non-canonically; see e.g. [HLN21HLN21] for a review of Anderson duality and the fact that
the Anderson dual of KO is given by Ω4KO.

Example 6.9. The Baum–Connes conjecture is known to be true for free groups Fn of rank n ≥ 1.
In particular, we have an equivalence K(C∗rFn) ' KO⊕

⊕
n KO[1], and therefore obtain

L(C∗rFn) ' L(R)⊕
⊕
n

L(R)[1].

Remark 6.10. We warn the reader that, contrary to the complex case, C∗rZ is not isomorphic
to C(T), but rather to the algebra of C2-equivariant continuous functions T→ C, where T and C
both carry the complex conjugation action.

Example 6.11. Let Σg be an orientable surface of genus g ≥ 1 and π its fundamental group.
The Baum–Connes conjecture is known for surface groups, so we find that

K(C∗rπ) ' Σg,+ ⊗KO ' KO⊕KO[1]⊕2g ⊕KO[2].
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Consequently, we obtain

L(C∗rπ) ' L(R)⊕ L(R)⊕ L(R)[1]⊕2g ⊕ L(R)[2].

Example 6.12. Let W be a right angled Coxeter group associated to a flag complex Σ as studied
e.g. in [KLL21KLL21]. Then [KLL21KLL21, Theorem 7.16] shows that K(C∗rW ) ' KOr, where r is the number
of simplices of Σ, including the empty simplex. Therefore, we find L(C∗rW ) ' L(R)r.

Remark 6.13. In fact, [KLL21KLL21] shows that there are explicit maps αi : R → RW ⊆ C∗rW , for
i = 1, . . . , r, such that the induced maps⊕

r

KO −→ K(C∗rW ) and
⊕
r

L(R) −→ L(RW )

are equivalences. Combined with Theorem AA, we deduce that among the following two maps⊕
r

L(R) −→ L(RW ) −→ L(C∗rW )

both the first map and the composite are equivalences. Therefore, so is the second map. This
gives a non-trivial example where the completion conjecture of [LN18LN18, Conjecture after Cor. 5.7],
which states that the map L(RG) → L(C∗rG) is an equivalence after inverting 2, is in fact true
without inverting 2.

Example 6.14. Let A be a real C∗-algebra equipped with an automorphism ϕ : A → A. Then
there is a fibre sequence

A
id−ϕ−→ A −→ Aoϕ Z

in KK, this is essentially the Pimsner–Voiculesu sequence in KK-theory, see e.g. [Bla98Bla98, §19.6]. If
id− ϕ∗ is injective on K−1(A), one also obtains a fibre sequence

k(A)
1−ϕ∗−→ k(A) −→ k(Aoϕ Z)

of ko-modules. Consequently, there is then also a fibre sequence

L(A)
1−ϕ−→ L(A) −→ L(Aoϕ Z).

More generally, there is a similar (conditional) fibre sequence describing the L-theory of reduced
crossed products by free groups.

Example 6.15. An example of a crossed product by Z is the real rotation algebra Aθ = C(T)oθZ
where θ is a real number and acts on functions on the circle group T by a rotation by θ. However,
by homotopy invariance, in KK we have an equivalence Aθ ' C(T)⊕C(T)[1] ' R⊕R[−1]⊕R[1]⊕R.
We therefore obtain

L(Aθ) ' L(R)⊕2 ⊕ L(R[−1])⊕ L(R[1]).

Using our previous calculations, we finally obtain

(1) L0(Aθ) = Z2 ⊕ Z/2,
(2) L1(Aθ) = Z,
(3) L2(Aθ) = 0, and
(4) L3(Aθ) = Z.

We note that the order structure on K0(A) gives additional information (also on θ), and that by
the isomorphism K0(A) ∼= L0(A), this order structure is also present in L-theory. We are not aware
of a description of the order structure on L-theory which does not make use of the isomorphism
to K-theory.

Example 6.16. We consider the real Cuntz algebras OR
n+1. In KK, there is a canonical equivalence

OR
n+1 ' R/n. In particular, k(OR

n+1) ' ko/n. Therefore, we find

L(OR
n+1) ' ko/n⊗ko L(R) = L(R)/n.

Likewise, one can consider the tensor poducts OR
n+1 ⊗R OR

m+1, where one finds

L(OR
n+1 ⊗R OR

m+1) ' L(R)/ gcd(m,n)⊕ ΣL(R)/ gcd(m,n)



L-THEORY OF C∗-ALGEBRAS 25

contrary to the case of K-theory, where the real K-groups of OR
n+1 ⊗R OR

m+1 do not only depend
on the greatest common divisor of m and n – simply because (ko/n)/m does not only depend on
this number; see [Boe02Boe02] for explicit calculations.

Therefore, not surprisingly, L-theory of real C∗-algebras is a strictly weaker invariant than K-
theory: The real C∗-algebras OR

3 ⊗R OR
5 and OR

3 ⊗R OR
3 are distinguished by their K-groups, but

not by their L-groups.

Example 6.17. Let ER
2n denote the simple separable nuclear real form of the Cuntz-algebra OC

2n+1

considered in [BRS11BRS11]. Its topological K-theory is given by

K(ER
2n) ' KO/nx

where x ∈ π4(KO) is a generator. Note that its complexification is given by KU/2nβ2 ' KU/2n,
compatible with the equivalence K(OC

2n+1) ' KU/2n. There is a fibre sequence

Z −→ ko/nx −→ k(ER
2n)

where the first map induces multiplication by 4n on π0. We conclude that there is a fibre sequence

L(C)/2 −→ L(R)/8n −→ L(ER
2n)

in which the first map induces the non-zero map on π4i. In particular, the L-groups are given by

(1) L0(ER
2n) = Z/4n,

(2) L1(ER
2n) = 0,

(3) L2(ER
2n) = Z/2,

(4) L3(ER
2n) = Z/2.

Example 6.18. We end with a number of structural examples:

(1) The L-groups of a C∗-algebra with K1(AC) = K7(A) = K6(A) = 0, are concentrated in
degrees divisible by 4.

(2) If the K-groups of a C∗-algebra are finitely generated, then so are the L-groups.
(3) If the K-groups of a C∗-algebra vanish after inverting a number n (e.g. when they are

n-primary torsion), then so do the L-groups.
(4) In Example 6.166.16 we have seen that there are algebras which cannot be distinguished by

their L-theories, but by their K-theories. However, we record here that a map f : A→ B
of C∗-algebras induces an equivalence on K-theory if and only if it does so on L-theory:
Indeed the only if part follows immediately from Theorem AA, so let us argue the if part.
By passing to the cofibre of the map associated to f in KK, we may equivalently show
that L(A) = 0 implies K(A) = 0. By Theorem BB, we deduce from L(A) = 0 that
Kn(A) = 0 for n = −2,−1, 0, 1. By the generalized Wood sequence (see the Remark
after Theorem BB), we deduce that K(AC) = 0 (the generalized Wood sequence reveals
that K1(AC) = 0 = K0(AC)) and therefore that η : ΣK(A)→ K(A) is an equivalence, and
consequently ηn is also an equivalence for any n ≥ 1. However, η3 = 0, showing that K(A)
must be zero.

7. Integral Baum–Connes and Farrell–Jones comparison

In [LN18LN18], we have used the equivalence K[ 1
2 ] ' L[ 1

2 ] to compare the Baum–Connes assembly
map and the L-theoretic Farrell–Jones assembly maps after inverting 2. The purpose of this section
is to prove the following integral refinement of this result.

Theorem 7.1. The map τ : k→ L induces the commutative diagram

koG∗ (EG) k∗(C
∗
rG)

LRG∗ (EG) L∗(RG) L∗(C
∗
rG)

BC

τ τ

FJ
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In order to explain the terms in the theorem, we will first briefly recall the setup for assembly
maps as proposed by Davis and Lück [DL98DL98].

The Davis–Lück picture for assembly maps starts with a discrete group G and an equivariant
homology theory E, encoded as a functor Orb(G) → Sp, where Orb(G) is the orbit category of
G, that is, the full subcategory of G-sets consisting of transitive G-sets (i.e. G-sets isomorphic to
G/H for a subgroup H of G). A family F of subgroups of G is a collection of subgroups closed
under conjugation and passing to further subgroups. Associated to any such family F, we may
form the F-orbit category OrbF(G) which is the full subcategory on all transitive G-sets whose
stabilisers belong to F (i.e. G-sets isomorphic to G/H for H ∈ F). The F-assembly map for G
and E is then given by the canonical map

EG(EFG)
def
= colim

G/H∈OrbFG
E(G/H) −→ E(G/G).

Given an inclusion of families F ⊆ F′, there is an evident factorisation of the F-assembly map
as follows:

EG(EFG) −→ EG(EF′G) −→ E(G/G)

in which the first map is referred to as the relative assembly map (with respect to the inclusion
of families F ⊆ F′) and the second map is the F′-assembly map. Following standard notation we
shall also write EFinG = EG and EVcycG = EG.

Relevant for us will be the functors given by equivariant topological K-theory and equivariant
L-theory. These are functors

KG,LRG : Orb(G) −→ Sp , G/H 7→ K(C∗H),L(RH)

for an involutive ring R, see e.g. [LN18LN18] for further details. For the family of finite subgroups Fin,
we shall denote these assembly maps by

BC: KG
∗ (EG) −→ K∗(C

∗G) and FJ: LRG∗ (EG) −→ L(RG).

We also note that the map FJ factors as the composite

LRG∗ (EG) −→ LRG∗ (EG) −→ L(RG),

whose second map we shall later also denote by FJ.

Remark 7.2. We warn the reader that the L-theoretic Farrell–Jones conjecture is more specifically
about the assembly map for the family Vcyc of virtually cyclic subgroups and for a related (but
in general different) functor G/H 7→ Lq(RH) where Lq is the Karoubi-localisation of Lq in the
sense of [CDH+22CDH+22], also known as universally decorated L-theory, denoted by L〈−∞〉,q in the
literature, where the superscript q refers to quadratic rather than symmetric L-theory. We show
in Theorem 7.67.6 below, that for a regular ring R and a torsion free group G, the Farrell–Jones
conjecture implies that the map denoted FJ above is also an isomorphism (in fact, for either of
the two maps denoted FJ above, as the first map in the composite is an isomorphism under the
assumptions made, see Proposition 7.77.7); to the best of our knowledge, this had not been observed
so far.

Remark 7.3. The assembly map in topological K-theory described above is related to the Baum–
Connes conjecture which was originally phrased in terms of equivariant Kasparov theory. First
and foremost, this conjecture is more specifically about the composite

KG
∗ (EG)

BC−→ K∗(C
∗G) −→ K∗(C

∗
rG)

where C∗G → C∗rG is the canonical morphism. We note here that the association G 7→ C∗rG
is not functorial in group homomorphisms, as famously the reduced group C∗-algebra C∗rFn of
a non-abelian free group is a simple algebra [Pow75Pow75]. Therefore, the Davis–Lück picture for the
assembly map in topological K-theory uses the full group C∗-algebra instead.

Now, it was shown in [Kra21Kra21] (and later and with different methods in [BEL21aBEL21a]) that the
assembly map for G, the family Fin of finite subgroups of G, and the functor KG is isomorphic to
the Baum–Connes assembly map, and in [Lan15Lan15] that for torsion-free groups, this assembly map
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has an interpretation as taking a Mishchenko–Fomenko index (this latter result was a folklore
result known to the experts for a long time).

In addition, the assembly map in topological K-theory is often performed using the complex
group C∗-algebra rather than the real one, but see [Sch04Sch04] for a relation between the two which
says that there is a comparison square for the real and complex assembly maps, and that either
of these two assembly maps is an isomorphism (in all degrees) if and only if the other is.

The natural map k → L as functors on the category KK induces a natural transformation
kG → LRG as functors on the orbit category, see [LN18LN18] for the details. Consequently, we obtain
the following theorem, which is an integral analog of [LN18LN18, Theorem D].

Theorem 7.4. The map τ : k→ L of Theorem 4.14.1 induces the following commutative diagram.

koG∗ (EG) k∗(C
∗G)

LRG∗ (EG) L∗(RG) L∗(C
∗G)

BC

τ τ

FJ

Proof of Theorem 7.17.1. There is a canonical map C∗G→ C∗rG from the full to the reduced group
C∗-algebra. Since τ is natural, we obtain the commutative diagram

koG∗ (EG) k∗(C
∗G) k∗(C

∗
rG)

LRG∗ (EG) L∗(RG) L∗(C
∗G) L∗(C

∗
rG)

BC

τ τ τ

FJ

which is the content of Theorem 7.17.1. �

Remark 7.5. Upon inverting 2 and the Bott element βR, the diagram of Theorem 7.17.1 becomes
equivalent to the diagram

KOG
∗ (EG)[ 1

2 ] KO∗(C
∗
rG)[ 1

2 ]

LRG∗ (EG)[ 1
2 ] L∗(RG)[ 1

2 ] L∗(C
∗
rG)[ 1

2 ]

∼= ∼=

which is the one obtained earlier in [LN18LN18, Theorem D]. This uses in particular that the compar-
ison map LRG∗ (EG) → LRG∗ (EG) is an isomorphism after inverting 2 [LR05LR05, Proposition 2.18].
Theorem 7.17.1 in addition provides some finer information about the comparison, as for instance
the kernels and cokernels of the vertical maps appearing in the diagram of Theorem 7.17.1 can be
analysed by means of Proposition 5.15.1

To put Theorem 7.17.1 into context, we note that the diagram in it participates in the following
larger diagram:

KOG
∗ (EG) K∗(C

∗
rG)

koG∗ (EG) k∗(C
∗
rG)

LRG∗ (EG) L∗(RG) L∗(C
∗
rG)

LZG∗ (EG) L∗(ZG)

BC

τ

'≥0

FJR

FJZ
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The map labelled τ in the diagram factors as

koG∗ (EG) −→ LRG∗ (EG) −→ LRG∗ (EG)

where the second map is split injective, see the argument below, and the first map is in principle
understandable by means of Theorem AA & BB. We shall argue that the full Farrell–Jones conjecture
for G implies that1111

(1) the map FJR is an isomorphism, and
(2) the map FJZ is an isomorphism if G is torsion free.

To see statement (11) and the claim about the split injectivity above, we first note that there is a
commutative diagram

LRG(EG) LRG(EG) L(RG)

LRG(EG) LRG(EG) L(RG)

where for a ring R, L(R) is what is denoted by L〈−∞〉(R) in the literature, see [LR05LR05, Remark
1.21] and [CDH+22CDH+22] for the notation. There is a canonical map L(R) → L(R) which is an
equivalence for instance if K(R), the algebraic K-theory of R, is connective, see e.g. [LR05LR05, Remark
1.22]. We claim that the vertical maps in the above diagram are all equivalences: Indeed, the K-
theoretic Farrell–Jones conjecture together with the fact that R is a regular Q-algebra and [LR05LR05,
Proposition 2.14] implies that K(RG) is connective, so that L(RG) → L(RG) is an equivalence,
see [LR05LR05, Conjecture 3.3]. To see that also middle and left vertical maps are equivalences, we
use the same argument for G replaced by virtually cyclic subgroups and finite subgroups of G,
respectively - note here that the class of group for which the (full) Farrell–Jones conjectures hold
is closed under taking subgroups.

Now, the Farrell–Jones conjecture implies that the right lower horizontal map is an equivalence,
and [LR05LR05, Proposition 2.16] states that the left lower horizontal map is split injective.

Statement (22) requires different methods, since the Farrell–Jones conjecture is a conjecture
about quadratic L-theory whereas we make a statement about symmetric L-theory. Note that this
subtlety does not appear for group rings over R since there, quadratic and symmetric L-theory
agree. We give a proof of statement (22) in Theorem 7.67.6 below, relying on some recent develop-
ments in hermitian K-theory.

The big diagram appearing above simplifies if the groupG is torsion free, see also Proposition 7.77.7
below: In this case one obtains the following diagram.

BG⊗KO K(C∗rG)

BG⊗ ko k(C∗rG)

BG⊗ L(R) L(RG) L(C∗rG)

BG⊗ L(Z) L(ZG)

BC

'≥dimBG '≥0

FJR

FJZ

In addition, for torsion free groups, the Farrell–Jones conjecture in quadratic L-theory implies
the one in symmetric L-theory, see the subsection below. However, the lower vertical comparison
maps which change the base ring in the L-theoretic FJ conjecture from Z to R are quite subtle
to analyse, in particular integrally, but even after inverting 2, see e.g. [LR05LR05, Remark 3.20]. If
furthermore BG has an n-dimensional classifying space, then the left top most vertical map is an
equivalence in degrees ≥ n+ 1.

11That is, we assume that G is a Farrell–Jones group in the sense of [HLLRW21HLLRW21, §5.2].
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Farrell–Jones for symmetric L-theory. In this section we prove the following result we have
indicated above and which might be of some independent interest.

Theorem 7.6. Let G be a torsion free group and R a regular ring. Assume that the FJ conjecture
holds for G. Then the assembly map

BG⊗ Ls(R) −→ Ls(RG)

is an equivalence.

To connect it more explicitly to the statement (22) above, we also record here the following
result.

Proposition 7.7. Let R be a regular ring and G a torsion free group. Then the relative assembly
map

BG⊗ Ls(R) −→ LsRG(EG)

is an equivalence.

Proof. By the transitivity principle for assembly maps [LR05LR05, Theorem 2.9], we need to show
that for each virtually cyclic subgroup V of G, the assembly map BV ⊗ Ls(R) → Ls(RV ) is an
equivalence. Now, since G is torsion free, so is V , and therefore V is either trivial or isomorphic
to Z [LR05LR05, Lemma 2.15]. We therefore need to show that the Shaneson–Ranicki splitting holds
for symmetric L-theory, which is for instance done in the generality of bordism invariant Verdier
localising invariants of Poincaré categorie in [CDH+22CDH+22], see [MR90MR90] for an earlier proof of the
splitting result for symmetric L-theory. Note that we also use that K0(RV ) ∼= K0(R) in order to
ensure that no decoration problems appear in the Shaneson–Ranicki splitting. �

In what follows, we will freely make use of the language and notation developed in the sequence
of papers [CDH+20aCDH+20a, CDH+20bCDH+20b, CDH+20cCDH+20c, CDH+22CDH+22]. Suffice it to say here that for a space1212 X
and a Poincaré category (C, Ϙ), we write

(C, Ϙ)X = colim
X

(C, Ϙ)

for the tensor of (C, Ϙ) with X. We call (C, Ϙ)X the visible Poincaré category associated to X
and (C, Ϙ), see [CDH+20aCDH+20a] for some explanation of the terminology and how its L-theory connects
to previously studied versions of visible L-theory. In the proof of the following result, which we
initially learned from Yonatan Harpaz, we will describe the Poincaré category (C, Ϙ)X in more
detail.

Lemma 7.8. Let X be a space, C be a stable ∞-category and Ϙ→ Ϙ′ a map of Poincaré structures
on C inducing an equivalence on the bilinear parts of Ϙ and Ϙ′. Then the diagram

X ⊗ L(C, Ϙ) X ⊗ L(C, Ϙ′)

L((C, Ϙ)X) L((C, Ϙ′)X)

is a pullback, where the vertical maps are the assembly maps.

Proof. Let T = cofib(Ϙ→ Ϙ′), which is by assumption an exact functor Cop → Sp. It is therefore
a filtered colimit of representables. All terms in the diagram appearing in the lemma preserve
filtered colimits of Poincaré categories, so it suffices to prove the lemma in the case where T is
represented by an object t of C, i.e. where T = mapC(−, t). In this case, TX = cofib(ϘX → Ϙ′X) is
given as follows.

We recall that CX is the subcategory of Fun(Xop,Pro(C))1313 generated under finite limits from
the right Kan extensions of functors ∗ → C → Pro(C) along inclusions ∗ → Xop. We then have

12here, best to be thought of as an ∞-groupoid
13Of course, Xop ' X, but in order to get op’s and colimits vs limits correct, it is best not to identify X with

Xop just yet.
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that for ϕ ∈ CX ⊆ Fun(Xop,Pro(C))

TX(ϕ) = colim
x∈X

T (ϕ(x)) = colim
x∈X

map(ϕ(x), t)

so that TX is represented by the object r∗(t) in Fun(Xop,C) ⊆ Fun(Xop,Pro(C)), where r : X → ∗
is the unique map. Now in general, r∗(t) is not contained in CX (though it is the case if X is
compact to which the general case reduces again by using that all functors in sight preserve filtered
colimits). Regardless, one can write it as a filtered colimit of objects in CX .

The formula for relative L-theory of [HNS22HNS22] says that there is an equivalence

L(C; Ϙ, Ϙ′) = Eq
(
Ϙ
′(Dt)⇒ BϘ(Dt,Dt)

)
,

where D denotes the (common) duality of C - here, one of the maps is the canonical forgetful
map Ϙ′(Dt) → BϘ(Dt,Dt)

hC2 → BϘ(Dt,Dt), and the other one is the canonical map Ϙ′(Dt) →
BϘ(Dt,Dt)

hC2 → BϘ(Dt,Dt)
tC2 ' ΛϘs(Dt) → ΛT (Dt) = mapC(Dt, t) ' BϘ(Dt,Dt). Likewise,

we obtain
L(CX ; ϘX , Ϙ

′
X) = Eq

(
Ϙ
′
X(D(r∗(t)))⇒ BϘX (D(r∗(t)), D(r∗(t)))

)
.

Now D(r∗(t)) = r∗Dt, and therefore, since ϘX(ϕ) = colimX Ϙ(ϕ(x)), and likewise for the bilinear
functor [CDH+20aCDH+20a, Prop. 6.4.3], we find that

L(CX ; ϘX , Ϙ
′
X) = colim

X
Eq
(
Ϙ
′(Dt)⇒ BϘ(Dt,Dt)

)
= X ⊗ L(C; Ϙ, Ϙ′)

and one checks that the maps are again the ones indicated above. The lemma then follows. �

Recall that for a ring R with involution we have the stable ∞-category Dp(R) of perfect com-
plexes over R. The involution on R induces a canonical duality on Dp(R), giving rise to homotopy
quadratic and homotopy symmetric Poincaré structures Ϙq and Ϙs which are related by the canon-
ical symmetrisation map Ϙq → Ϙs. This map is an equivalence on cross effects. Let us define, for
ease of notation, for any space X, the visible symmetric and visible quadratic L-theory of X with
coefficients in R as follows.

Lvs(X;R) = L((Dp(R), Ϙs)X) and Lvq(X;R) = L((Dp(R), Ϙq)X).

By analysing the linear part of the visible Poincare structure, we find that there is a canonical
map of Poincaré categories

(Dp(R)X , Ϙ
q)→ (Dp(R), Ϙq)X

is an equivalence, i.e. that visible quadratic L-theory is simply quadratic L-theory of the category
Dp(R)X with its induced duality; we will therefore also write Lq(X;R) for Lvq(X;R). We note
that Dp(R)X ⊆ Dp(R[ΩX]) so that in total we obtain an equivalence Lvq(X;R) ' Lq

c(R[ΩX])
and using the π-π-theorem, see e.g. [CDH+20cCDH+20c, Corollary 1.2.33 (i)], even a further equivalence1414

Lq
c(R[ΩX]) ' Lq

c(Rπ) where π = π1(X) and the subscript c stands for an appropriate control,
namely the one given by the image of the map K0(R)→ K0(Rπ).

Corollary 7.9. The diagram

X ⊗ Lq(R) X ⊗ Ls(R)

Lq(X;R) Lvs(X;R)

is a pullback.

Proof. This is a special case of Lemma 7.87.8. �

The following is now the remaining piece in the proof of Theorem 7.67.6.

Lemma 7.10. Let R be an involutive ring and G be a 2-torsion free group. Then there is a
canonical equivalence

Lvs(BG;R) −→ Ls
c(RG).

Here the subscript c stands for control in the subgroup Im(K0(R)→ K0(RG)) ⊆ K0(RG).

14under the assumption that X is connected and pointed.
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Proof. We first note that the visible symmetric Poincaré structure, for connected and pointed
X, in one on Dp(R)BG ⊆ Dp(RG) where the subcategory is the one associated to the subgroup
Im(K0(R)→ K0(RG)). Since Poincaré structures extend uniquely to idempotent completions, it
suffices to argue that on the category Dp(RG), the visible Poincaré structure Ϙvs agrees with the
Ϙ

s. Since the bilinear parts agree, it suffices to compare the linear terms. In this case, we have

Λvs(M) = mapRG(M,RtC2) whereas Λs(M) = mapRG(M, (RG)tC2)

where RG has the C2-action given induced by the involution on R and the inversion action on G.
The map from left to right is induced by the map {e} → G. Now, as a module with C2-action,
RG therefore decomposes according to the decomposition of G into transitive C2-sets as follows:

RG =
⊕
g∈G[2]

R⊕
⊕

[g]∈G\G[2]

indC2
e (R).

In particular, if e is the only 2-torsion element in G, the the map R→ RG induces an equivalence
after applying (−)tC2 . Therefore, in this case we find that the canonical map of Poincaré structures
Ϙ

vs → Ϙs is an equivalence. �

Proof of Theorem 7.67.6. We consider the following commutative diagram.

BG⊗ Lq(R) Lq(RG)

BG⊗ Lq(R) Lq(RG)

The left vertical map is an equivalence since K(R) is assumed to be connective. The lower hori-
zontal map is the map which is predicted to be an equivalence by the FJ conjecture. The right
vertical map is an equivalence if K(RG) is connective (though this is not and if and only if). Now
the K-theoretic FJ conjecture implies that K(RG) ' BG ⊗ K(R) which is again connective by
assumption. We conclude that the top horizontal map is an equivalence. Now we use the pullback
diagram

BG⊗ Lq(R) BG⊗ Ls(R)

Lq(BG;R) Lvs(BG;R)

obtained in Corollary 7.97.9 together with the equivalences Lq(BG;R) ' Lq(RG) (which holds for
all groups G) and the equivalence Lvs(BG;R) ' Ls(RG) of Lemma 7.107.10 (which holds for 2-torsion
free groups G). We have argued above that the left vertical map is an equivalence, and therefore
so is the right. �

8. Relations to signature genera

We now comment on a relation to previous approaches to comparing the Baum–Connes (BC)
and Farrell–Jones (FJ) assembly maps and thereby analytic and surgery theoretic approaches to
the Novikov conjecture. We recall here that the Novikov conjecture is implied by either of the
two assembly maps being rationally injective, and that [LN18LN18, Theorem D] implies that the FJ
assembly map is rationally injective if the BC assembly map is rationally injective. In several
papers [HR05aHR05a, HR05bHR05b, HR05cHR05c, PS16PS16, Wah13Wah13] maps from L-theory to K(−)[ 1

2 ]-theory have been
constructed in order to get such a comparison. The idea common to those approaches is to
promote the signature operator of an oriented manifold to an appropriate K-theory class. We will
review this operator below and connect it to our approach. Note, however, that by Theorem 9.39.3
no integral map of spectra from L-theory to K-theory exists and our maps τR : ko → LR and
τC : ku→ LC are indeed maps in the other direction.
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The signature operator. Let us first review the signature operator, see e.g. [LM89LM89, II.§6, Exam-
ple 6.2] and [RW06RW06, Section 1]. To this end we let M be a closed, oriented, Riemannian manifold
of dimension n. We consider the de Rham complex

Ω∗(M ;C) =

n⊕
i=0

Ωi(M ;C)

of complex valued differential forms on M with the operator d : Ω∗(M ;C) → Ω∗(M ;C). The
orientation and metric induce inner products on Ω∗(M ;C) and we denote the formal adjoint of d
by d∗ as usual. We then consider the elliptic, first order differential operator DM := d+ d∗. With
respect to the chiral grading defined below DM is called the signature operator. We have that

D2
M = D∗MDM = dd∗ + d∗d =: ∆M

is the well known Laplace operator on M . Thus the solutions to DM = 0 are given by the solutions
to ∆M = 0 which are the harmonic forms. By Hodge theory, the harmonic forms are isomorphic
to
⊕
H∗(M ;C). Now we introduce the chiral Z/2-grading on Ω∗(M). This is not the grading by

even and odd forms (with respect to which the operator d+ d∗ is the Euler operator whose index
is the Euler characteristic). Instead, the grading operator τ is defined on a p-forms ω by

τ(ω) = idn/2e+p(p+1)+2p(n−p) ∗ ω

where n = dimM and ∗ is the Hodge-∗-operator. It is not hard to check that this is indeed a
grading operator, i.e. that τ2 = 1. Also, we note if n is even, then τ as defined above on p-forms
ω satisfies

τ(ω) = in/2+p(p−1) ∗ ω.
This is the familiar grading operator as for instance considered in [RW06RW06, §1] or [LM89LM89, II.§6,
Example 6.2].

Remark 8.1. One can also describe the above using Clifford algebras as follows. One has a

canonical (additive) isomorphism ϕ : Ω∗(M ;C)
∼=−→ Γ(CliffC(TM)) [LM89LM89, I.§1, Formula (1.13)]1515.

Under this isomorphism the operator d + d∗ corresponds to the Dirac operator on the Clifford
bundle CliffC(TM), see [LM89LM89, II.§5, Theorem 5.12]. The chiral grading defined above then
corresponds under this isomorphism to the grading induced by left multiplication with the complex
volume element which is the section of CliffC(TM) given locally by idn/2ee1 · · · en for an oriented,
orthonormal frame e1, ..., en, see [RW06RW06, Section 1]. Indeed, we have to check that (locally)

ϕ(τ(ω)) = idn/2ee1 · · · en · ϕ(ω)

for ω ∈ Ωp(M ;C)m with m ∈ M . By rescaling ω and changing the local frame we may assume
that ω = e∨1 ∧ ... ∧ e∨p so that ϕ(ω) = e1 · · · ep. Then we calculate

idn/2ee1 · · · en · ϕ(ω) = idn/2ee1 · · · en · e1 · · · ep
= idn/2e(−1)(n−1)+···+(n−p)ep+1 · · · en · e2

1 · · · e2
p

= idn/2e(−1)n+···+n−p+1−p(n−p)+p(n−p)ep+1 · · · en
= idn/2e(−1)1+···+p+p(n−p)ep+1 · · · en

= idn/2e(−1)
p(p+1)

2 +p(n−p)ep+1 · · · en
= idn/2e+p(p+1)+2p(n−p)ep+1 · · · en
= idn/2e+p(p+1)+2p(n−p) · ϕ(e∨p+1 ∧ · · · ∧ e∨n)

= ϕ(τ(ω))

as claimed.

15Here, the Clifford algebra bundle is formed using a Riemannian metric on M with the relation v2 = −〈v, v〉
for a tangent vector v, i.e. we include the minus sign following [LM89LM89].
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If n is even then τ anticommutes with DM , so that in terms of the decomposition Ω∗(M ;C) =
Ω∗(M ;C)+ ⊕Ω∗(M ;C)− the operator DM restricts to D+

M : Ω∗(M ;C)+ → Ω∗(M ;C)−. Then we
find that the index

ind(DM ) = dim ker
(
Ω∗(M ;C)+ D+

M−→ Ω∗(M ;C)−
)
− dim coker

(
Ω∗(M ;C)−

D+
M−→ Ω∗(M ;C)+

)
= dim ker

(
Ω∗(M ;C)+ D+

M−→ Ω∗(M ;C)−
)
− dim ker

(
Ω∗(M ;C)−

D−M−→ Ω∗(M ;C)+
)

is given by the signature of the manifold M , hence the name signature operator. By means of
Kasparov’s model of the (complex) K-homology of M given by KU0(M) ∼= KK(C0(M),C), we
see that the operator DM with respect to the chiral grading defines a class in KU0(M). In this
picture taking the index corresponds to the pushforward KU0(M)→ KU0(pt) = Z.

If n is odd, then τ commutes with DM , and both τ and DM anti-commute with the usual
even/odd grading operator σ. We can then consider the operator DM as graded via the even/odd
grading, and use τ to obtain in addition an action by ClC(R) where the odd generator acts via τ .
In this way, one obtains the signature operator of M as an element of

KU1(M) = KK(C0(M),ClC(R))

see [RW06RW06, pg. 49]. Finally we would like to bring the operators just constructed into the top
degrees by multiplying with the Bott class. To this end we note that we have that

KU0(M2n)
βn

−−→ KU2n(M2n) = ku2n(M2n)

KU1(M2n+1)
βn

−−→ KU2n+1(M2n+1) = ku2n+1(M2n+1)

where the latter equalities holds since M is 2n and (2n+ 1)-dimensional, respectively.

Definition 8.2. For any n-dimensional closed oriented manifold M we define the class of the
signature operator [DM ] as the class in kun(M) just described.

One of the main goals of this section is to prove the following result. We denote by σC the
composite

MSO
σR−→ L(R) −→ L(C)

of the Sullivan–Ranicki orientation with the canonical map induced by R → C and by τC : ku →
L(C) the canonical map from Theorem AA or [LN18LN18]. Both maps induce maps on homology of M :

MSOn(M)
σC−→ `(C)n(M)

τC←− kun(M)

again denoted by σC and τC, respectively. We denote by [M ] ∈ MSOn(M) the bordism class of
the identity of M .

Proposition 8.3. Let M be an n-dimensional closed oriented manifold. In the group `(C)n(M),
we have the equality

τC([DM ]) = 2bn/2c · σC([M ])

up to 2-power torsion, that is, the difference between the two classes is a 2-power torsion element.

Before we explain how to prove this statement we would like to ask the following interesting
and obvious question:

Problem 8.4. Does the equality of Proposition 8.38.3 hold integrally?

The proof of Proposition 8.38.3 will proceed in several steps. First note that it is enough to check
that the elements agree in `(C)[ 1

2 ]n(M) which is what we will in fact do. We first translate the
statement into homotopy theory. To this end we would like to understand the signature operator
in terms of genera. First recall that for each map of graded rings Φ: MSO∗ → R∗ one can assign
a Hirzebruch characteristic series

KΦ(t) =
t

expΦ(t)
∈ (R∗ ⊗Q)JtK
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where expΦ(t) is the inverse to the logarithm logΦ(t) =
∑
n Φ(CPn) tn+1

(n+1) . If we give t degree −2

then the Hirzebruch series1616 KΦ(t) is of degree −2. Note that since CPn is nullbordant for odd
n, the power series we consider here is really power series in t2. We will be interested in the cases
R∗ = KO∗ and R∗ = KU∗. We can introduce the degree 0 element z := βt ∈ KU∗JtK and can
rewrite the power series KΦ(t) as a power series in z:

KΦ(z) ∈ QJzK

Even for the case KO this works since z2 = β2t2 exists in the rationalization (recall that β2 = x/2,
for x ∈ KO4 as considered earlier) and the power series is really a series in z2. We will thus
also use this convention for KO and hope this does not lead to confusion. Proposition 8.38.3 is a
consequence of the following more general result, as we will explain below.

Theorem 8.5. (1) There is a unique map of E∞-rings LAS : MSO→ ko[ 1
2 ] which on homo-

topy groups induces the map

[M4n] 7→ 2−2nβ2nsign(M4n). 1717

(2) For every space X, the induced map MSO∗(X) → ko[ 1
2 ]∗(X)

c−→ ku[ 1
2 ]∗(X) takes a class

[M
f−→ X] to 2−bn/2cf∗([DM ]) where [DM ] is the signature class of Definition 8.28.2.

(3) The Hirzebruch characteristic series of LAS is given by

KLAS
(z) =

z/2

tanh(z/2)
.

(4) We have a commutative diagram

MSO
LAS //

σR

��

ko[ 1
2 ]

τR

��
`(R)

can // `(R)[ 1
2 ]

of E∞-ring maps.

Remark 8.6. Before we prove this theorem, we note that the the genus associated with LAS is not
quite the ordinary signature genus since there are powers of 2 appearing. In fact, the characteristic
series of the ordinary signature genus is z/ tanh(z) by Hirzebruch’s signature theorem. The genus
we consider here first came up (to the best of our knowledge) in Atiyah-Singer’s deduction of
Hirzebruch’s signature theorem using their index theorem, see [AS68AS68], specifically in equation (6.5)
on page 577 in loc. cit. and the discussion around it for the powers of 2 that appear. Therefore it is
not surprising that this genus shows up here. Similar genera have also been considered by Sullivan
to construct a version of the orientation σR, see e.g. [MM79MM79, §5.A]. Therefore, Theorem 8.58.5 might
not come as a surprise to the experts. However, a highly structured statement as Theorem 8.58.5
(4) is only possible since we have also constructed the map ko[ 1

2 ]→ `(R)[ 1
2 ] as a map of E∞-ring

spectra.

Proof of Proposition 8.38.3. First, we note that the statement of Proposition 8.38.3 is equivalent to
showing the claimed equality after inverting 2. By (4) of Theorem 8.58.5, we also have a commutative
diagram of E∞-ring spectra

MSO ku[ 1
2 ]

`(C) `(C)[ 1
2 ]

cLAS

σC τC

can

16Topologically, the Hirzebruch series is the difference class in H0(CP∞, R ⊗HQ)× betwen the orientation Φ

and the standard rational orientation of R⊗HQ.
17Informally, β2nsign(M4n) is the signature of M if n is even and is 2 times the signature if n is odd.
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Thus, for an n-dimensional closed oriented manifold M , we have the commutative diagram

MSOn(M) kun(M)[ 1
2 ]

`(C)n(M) `(C)n(M)[ 1
2 ]

cLAS

σC τC

can

By (2) of Theorem 8.58.5, the top right composite sends [M ] to 2−bn/2cτC([DM ]), so the commuta-
tivity of the above diagram indeed gives the equality

2bn/2c · σC([M ]) = τC([DM ])

in `(C)n(M)[ 1
2 ] as claimed. �

Proof of Theorem 8.58.5. We first prove the uniqueness statement involved in part (1). In fact we
also prove the uniqueness result involving homotopy ring maps. To this end we consider the maps

π0

(
MapE∞(MSO, ko[ 1

2 ])
)
−→ π0

(
MapHoRing

Sp (MSO, ko[ 1
2 ])
)

π∗−→ HomRing(MSO∗, ko[ 1
2 ]∗)

K−→ QJzK

where MapHoRing denotes the connected components of the space of maps of spectra that are
homotopy ring maps and the first map simply forgets the E∞-structure.

Our claim is that all these maps are injective. For the last map K the assertion is true since
ko∗[

1
2 ] injects into KO∗ ⊗ Q and rationally, we can reconstruct a genus from its characteristic

series. In order to show injectivity of the first two maps it suffices to show that the composites

π0

(
MapE∞(MSO, ko[ 1

2 ])
)
→ QJzK π0

(
MapHoRing

Sp (MSO, ko[ 1
2 ])
)
→ QJzK

are injective. This will follow from the theory of orientations developed in [May77May77] and further in
[AHR10AHR10] as we explain now. First, we note that we can localize away from 2 and that the canonical
map MSpin[ 1

2 ] → MSO[ 1
2 ] is an equivalence. We may therefore replace MSO above with MSpin.

For any pair of E∞-maps f, g : MSpin→ ko[ 1
2 ] we have a difference map f/g : bspin→ gl1(ko[ 1

2 ])

which is a map of spectra. More precisely the space of E∞-ring maps MSpin → ko[ 1
2 ] is a torsor

over the space of spectrum maps bspin→ gl1(ko[ 1
2 ]). Similarly in the case of homotopy ring maps

the difference map is an H-space map Bspin → Gl1(ko[ 1
2 ]), where BSpin and Gl1(ko[ 1

2 ]) denote

the infinite loop spaces of the spectra bspin and gl1(ko[ 1
2 ]), respectively.

Moreover from the difference class f/g we can recover the quotient Kf/Kg since Kf was itself
constructed rationally as a difference class of f with the standard rational orientation MSO →
HQ→ koQ. Thus the whole statement is implied by showing that the canonical maps
(8.1)

π0MapSp(bspin, gl1(ko[ 1
2 ]))→ π0MapHSpc(BSpin,Gl1(ko[ 1

2 ]))→ π0MapHSpc(BSpin,Gl1(koQ))

are injective. Since bspin is 3-connected, we note that all mapping spaces do not change when
replacing gl1(ko[ 1

2 ]) with τ≥1gl1(ko[ 1
2 ]) ' τ≥1gl1(ko)[ 1

2 ], and using connectedness of bspin again,

we may replace gl1(ko[ 1
2 ]) with gl1(ko)[ 1

2 ] and similarly gl1(koQ) with gl1(ko)Q. Moreover, since
H-space maps form a collection of connected components inside the space of all maps, we may
also neglect the superscript H. The first of the two maps in (8.18.1) is then induced by the canonical
map of spectra Σ∞+ BSpin→ bspin, the counit of the (Σ∞+ ,Ω

∞)-adjunction. We then consider the
following fracture square pullback.

gl1(ko)[ 1
2 ]

∏
p 6=2

gl1(ko)∧p

gl1(ko)Q

[ ∏
p 6=2

gl1(ko)∧p

]
Q
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Mapping bspin and Σ∞+ BSpin into this pullback, we obtain pullback descriptions for both mapping
spaces in question. We then observe that

π1(MapSp(bspin,
[∏
p 6=2

gl1(ko)∧p

]
Q

)) = 0 = π1(MapSp(Σ∞+ BSpin,
[∏
p 6=2

gl1(ko)∧p

]
Q

))

This follows simply from the observation that the homotopy groups of the rational spectrum[ ∏
p6=2

gl1(ko)∧p
]
Q are concentrated in degrees 4k, the rational homotopy of bspin is in degrees 4k

and BSpin has rational cohomology also concentrated in degrees 4k. We deduce that for X = bspin
and X = Σ∞+ BSpin, the canonical map

π0MapSp(X, gl1(ko)[ 1
2 ]) −→ π0MapSp(X, gl1(ko)Q)×

∏
p 6=2

π0MapSp(X, gl1(ko)∧p)

is injective. It therefore suffices to argue that the map Σ∞+ BSpin → bspin induces a π0 injection
upon mapping to gl1(ko)Q and gl1(ko)∧p for all p 6= 2 individually. Note that gl1(ko)Q =

∏
k≥1

HQ[4k],

so that it suffices to know that the map Σ∞+ Ω∞X → X induces an injection on rational cohomology
in all degrees, for all connective spectra X. To treat the p-adic case, we recall from [AHR10AHR10,
Theorem 4.11], applied to KO∧p , that gl1(KO)∧p → LK(1)gl1(KO) ' KO∧p is 1-truncated. Using
again that bspin is 3-connected, it suffices now to show that the map Σ∞+ BSpin→ bspin induces
a π0-injection on mapping spaces to KO∧p . Since this spectrum is K(1)-local, it finally suffices to
note that the map Σ∞+ BSpin→ bspin has a K(1)-local section. This is a consequence of the fact
that LK(1) = ΦΩ∞, where Φ is the Bousfield–Kuhn functor, see [LMMT20LMMT20, proof of Prop. 2.9] for
details. This shows that the first map of (8.18.1) is injective as claimed.

We turn to the second map of (8.18.1). Using again the fracture square for gl1(ko)[ 1
2 ] as before,

the statement follows if we can show that for F the fibre of the map∏
p 6=2

gl1(ko)∧p −→
[∏
p 6=2

gl1(ko)∧p

]
Q

we have
π0(MapSp(Σ∞+ BSpin, F )) = 0.

With a similar argument as before, using again that BSpin is 3-connected, we may equivalently
replace F by the fibre of the map ∏

p 6=2

KO∧p −→
[∏
p 6=2

KO∧p

]
Q

which is, again by a fracture square argument the same fibre as that of the map KO[1
2 ] → KOQ.

Since this map is a retract of KU[ 1
2 ]→ KUQ, it finally suffices to show that

π0(MapSp(Σ∞+ BSpin,fib(KU[ 1
2 ]→ KUQ))) = 0.

Since BSpin has even rational cohomology, this is equivalent to showing that the map

π0(MapSp(Σ∞+ BSpin,KU[ 1
2 ])) −→ π0(MapSp(Σ∞+ BSpin,KUQ))

is injective. For this, we recall that BSpin ' colimn BSpin(n) and that Spin(n) is a compact
connected Lie group. In [And69And69], Anderson shows that for any compact connected Lie group G,
we have that KU ⊗ BG is a filtered colimit of direct sums of KU, with split injective transition
maps. Consequently, we find that for any KU-module M , we have

MapSp(Σ∞+ BSpin(n),M) = MapKU(colim
i∈I

⊕
Ai

KU,M) = lim
i∈I

∏
Ai

M

naturally in M . In particular, the map

MapSp(Σ∞+ BSpin(n),KU[ 1
2 ]) −→ MapSp(Σ∞+ BSpin(n),KUQ)

identifies with the map

lim
i∈I

∏
i∈Ai

KU[ 1
2 ] −→ lim

i∈I

∏
i∈Ai

KUQ
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which is injective on π0. Finally, the map we wish to show is injective identifies with the map on
π0 induced by the map

lim
n

MapSp(Σ∞+ BSpin(n),KU[ 1
2 ]) −→ lim

n
MapSp(Σ∞+ BSpin(n),KUQ).

Now, since for each n both mapping spaces which appear have no odd homotopy groups, the
lim-lim1-sequence shows that the map we wish to show is injective identifies with the map

lim
n
π0MapSp(Σ∞+ BSpin(n),KU[ 1

2 ]) −→ lim
n
π0MapSp(Σ∞+ BSpin(n),KUQ).

This is an inverse limit of injective maps, and hence itself injective as claimed. In particular, we
have shown that there is at most one E∞-map as in (1).

For the existence of this map, Ando-Hopkins-Rezk [AHR10AHR10, Theorem 6.1] give a concrete
criterion in terms of certain p-adic congruences, see also [NS19NS19, Theorem 3.1.1]. One could simply
verify these directly, which is for instance done by Wilson in [Wil15Wil15, Theorem 5.5]. Instead of
using this calculation, we will proceed differently and simply use the square of part (4) as a proof
of the existence of an E∞-map with the correct effect on homotopy groups, since the right vertical
map in it is an equivalence. This then also shows the commutativity of (4) immediately.

In order to prove statement (2), we use that the assignment

MSOn(X) −→ ku[ 1
2 ]n(X) (M

f−→ X) 7→ 2−bn/2cf∗([DM ])

is a map of multiplicative cohomology theories as shown in [RW06RW06], specifically see Remark 4 and
Lemma 6 in loc. cit. Thus by the previous results it is enough to check that it agrees with the
map of part (1) on coeffcients, which is true by construction.

For (3) we want to compute the Hirzebruch series of the map LAS . We find that

LAS(CPn) =

{
2−nβn n even

0 n odd

where β = βC is the complex Bott element. Thus we get that

logLAS
(t) = t+ β2

22 · t
3

3 + β4

24 · t
5

5 + β6

26 · t
7

7 + ...

= 2
β · ((βt/2) + (βt/2)3

3 + (βt/2)5

5 + (βt/2)7

7 + ...)

= 2
β tanh−1(βt/2)

The inverse of this power series (with respect to composition) is given by

expLAS
(t) = 2

β tanh(βt/2)

as one directly verifies. Therefore we get

KLAS
(t) =

βt/2

tanh(βt/2)
=

z/2

tanh(z/2)

where we recall that z = βt. �

Remark 8.7. In [Wil15Wil15, Theorem 5.7], Wilson writes that in addition to the map LAS : MSpin→
ko[ 1

2 ] described above, there also exists an integral E∞-map LH : MSpin → ko sending a spin

manifold M4n to β2nsign(M). This, however, is not correct, and the map LH , as an E∞-map
or equivalently by proof of Theorem 8.58.5 as a map of homotopy ring spectra, indeed only exists
after inverting 2. The fact that it does exist after inverting 2 can be shown using the criterion of
Ando–Hopkins–Rezk [AHR10AHR10, Theorem 6.1], or by postcomposing LAS with the Adams operation
ψ2 : ko[ 1

2 ] → ko[ 1
2 ]. We thank Johannes Sprang for explaining to us the following argument that

the map does not exist at the prime 2. To explain this, we recall again the general result of Ando–
Hopkins–Rezk: It says that the connected components of the space of E∞-maps MSpin→ ko are
in bijection to the set of sequences1818 (bk)k≥2 ∈ Q satisfying the following conditions:

(1) b2k+1 = 0 for k ≥ 1,

18For an E∞-map MSpin→ ko, this sequence is given by the coefficients in the characteristic series as described
above.
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(2) b2k ≡ −B2k

2k mod Z, and
(3) for every prime p and every element c ∈ Z×p /{±1}, there exists a p-adic measure µ on

Z×p /{±1} such that for all k ≥ 1 one has1919

(1− p2k−1)(1− c2k)b2k =

∫
Z×p /{±1}

x2kdµ(x),

see [NS19NS19, Definition 2.1.4] for the notion of p-adic measures on profinite groups such as
Z×p /{±1}.

The sequence relevant for realising the map sending M4n to β2nsign(M) as an E∞-map MSpin→
ko is the sequence

bk := 2k+1(2k−1−1)
2k Bk.

Conditions (1) and (2) above are indeed satisfied, see [Wil15Wil15, Proposition A.3] for (2) and (1)
follows from the same property for the Bernoulli numbers Bk. Now, at prime 2, one observes that
the sequence

(1− 22k−1)(1− c2k)b2k

converges to zero in Z2. However, a sequence of moments, i.e. a sequence of the form∫
Z×p /{±1}

x2kdµ(x)

converges to zero only if it is constantly zero. Indeed, x 7→ x2k+2r − x2k for x ∈ Z×2 takes values
in 2rZ2. Consequently,

|
∫
Z×p /{±1}

x2kdµ(x)|2 = lim
r→∞

|
∫
Z×p /{±1}

x2k+φ(2r)|2

where |−|2 denotes the 2-adic valuation, and the latter term is zero if we assume that the sequence
of moments converges to zero. Now, the sequence we need to investigate converges to zero, but is
not constantly zero, and is therefore not a sequence of moments.

We finish this section by noting that there is a commutative diagram

MSO ko[ 1
2 ] ko[ 1

2 ]

`(R) `(R)[ 1
2 ] `(R)[ 1

2 ]

LH

σR

LAS

ψ−2

τR τR

α

can

ψ−2

where we denote by ψ−2 also the induced (inverse) Adams operation on `(R)[ 1
2 ]. The resulting

map α is then given by the right-down composite in the diagram

`(R) `(R)[ 1
2 ]

`(R) `(R)[ 1
2 ]

can

ψ2 ψ2

can

Question 8.8. Does there exist an E∞-map ψ2 : `(R) → `(R) rendering the above diagram
commutative? Likewise, does there exist an E∞-map ψ2 : `(C) → `(C) rendering the analogous

19We remark that (1− c2k)b2k is a p-adic integer.



L-THEORY OF C∗-ALGEBRAS 39

diagram

`(C) `(C)[ 1
2 ]

`(C) `(C)[ 1
2 ]

can

ψ2 ψ2

can

commutative, where we use τC : ku[ 1
2 ]
'→ `(C)[ 1

2 ] to define ψ2.

One can show that the map ψ2 (in both the real and the complex case) exists as a map of
E1-algebras. In order to construct this, one can use that `(R) and `(C) are 2-locally the free
E1-HZ-algebra on a generator in degree 4 and 2, respectively, see also [HLN21HLN21, Corollary 4.2].
Then, the map ψ2 is constructed as to be an HZ-algebra map at prime 2. At the time of writing,
we do not know whether `(R) or `(C) are 2-locally E∞-HZ-algebras, and in addition, should this
be the case, we do not know whether to expect a possible E∞-map ψ2 : `(R)→ `(R) to be 2-locally
a map of E∞-HZ-algebras.

Remark 8.9. A curious consequence of the existence of the E1-map ψ2 : `(C) → `(C) is the fol-
lowing observation about formal groups. We recall that the formal group of ku is the multiplicative
one, in particular ku has a coordinate given by x+ y + βCxy. The map τC : ku→ `(C) provides a
coordinate of the formal group of `(C) which is then given by x+ y + 2bCxy, where bC ∈ L2(C) is
the periodicity generator, since τC(βC) = 2bC. Postcomposition with powers of ψ2 on `(C) gives
another coordinate of the formal group of `(C) given by x+ y + 2kbCxy, with k ≥ 1. As any two
coordinates of a formal group are connected by a (strict) isomorphism, we deduce that for k ≥ 1,
the formal group laws x+ y + 2xy and x+ y + 2kxy are isomorphic over Z.

9. Further remarks

On maps between K-theory and L-theory. In this subsection, we aim to analyse, similarly
to [LN18LN18] the possible integral maps between K- and L-theory. Let us first consider the map
ko → L(R) and describe its effect on homotopy groups. For this, and in general, it will be
convenient to record the following result:

Lemma 9.1. The transformation τ of Theorem AA is compatible with the unique lax symmetric
monoidal transformation τ of [LN18LN18, Theorem A] in the sense that there is a commutative diagram
of lax symmetric monoidal functors

k(−) L(−)

k(−⊗ C) L(−⊗ C).

τ

τ

Proof. One observes that the complexification functor sending A to AC = A⊗RC from C∗-algebras
to complex C∗-algebras descends to a symmetric monoidal functor

(−)⊗ C : KKR −→ KK.

Then both composites of the diagram in question are lax symmetric monoidal transformations
from k(−) → L(−). Using again that k(−) is initial, there is (up to canonical equivalence) only
one such transformation. Spelling this out explicitly, we obtain for each A ∈ R∗Alg a commutative
diagram

k(A) L(A)

k(AC) L(AC)

which is natural in A. �
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Example 9.2. Applying this in the case A = R, we in particular obtain a commutative diagram
of E∞-ring spectra given by

ko LR

ku LC

τ

τ

and the map induced on homotopy rings of the lower horizontal map is given by

Z[β] −→ Z[bC]

sending β to 2bC, see [LN18LN18, Lemma 4.9]. Using this, we can again describe the map ko→ LR on
homotopy rings as follows: Firstly, recall that

π∗(ko) = Z[η, x, βR]/(η3, 2η, ηx, x2 = 4βR)

with |η| = 1, |x| = 4 and |βR| = 8. The map ko→ ku vanishes on η, sends βR to β4
C and x to 2β2

C.
On homotopy, the map LR→ LC identifies with the canonical inclusion

Z[b2C] ⊆ Z[bC]

as the subring generated by b2C. We denote the element in L4(R) corresponding to b2C by b. It then
follows that the map ko→ LR sends x to 8b and βR to 16b2. Notice that this is indeed compatible
with the ring structure of π∗(ko)/torsion and our general analysis as in Proposition 5.15.1.

Just like in the complex case, the only possibility for an interesting integral map between K-
theory and L-theory is the one just constructed. More precisely, the analog of [LN18LN18, Theorem E]
in the real case holds as well:

Theorem 9.3. We have that

[KO,LR] = 0 = [LR,KO] = [`R,KO],

where the square brackets denote homotopy classes of maps of spectra.

Proof. The main ingredients in proving this result in the complex case are

- Both KU and LC are Anderson self-dual,
- the map KU⊗ LC→ (KU⊗ LC)[ 1

2 ] is an equivalence, and
- the spectrum KU⊗ LC is even, i.e. has no odd homotopy groups.

The analog of these results hold true for KO in place of KU and LR in place of LC because

- IZ(KO) ' Σ4KO, see [HS14HS14, Theorem 8.1] and IZ(LR) ' LR simply because the homotopy
groups of IZ(LR) are again free of rank 1 over the homotopy groups of LR, just like for
LC.

- to show that 2 is invertible in KO⊗ LR it suffices to observe that KU ' cofib(η : ΣKO→
KO), and hence for any spectrum E in which η is trivial (such as LR), we have

KU⊗ E ' KO⊗ E ⊕ Σ2KO⊗ E.

It follows that KO⊗LR is a direct summand in KU⊗LR which is itself a direct summand
of KU⊗ LC, as LR⊕ Σ2LR ' LC.

- We have just established that KO ⊗ LR is a direct summand of KU ⊗ LC, so is even as
well.

�

Remark 9.4. We also remark that, as expected, `(R) is not a compact ko-module2020, and likewise
that `(C) is not a compact ku-module. Indeed, it suffices to show the latter, as

ku⊗ko `(R) ' `(C)

20I.e. the functor mapko(`(R),−) does not preserve filtered colimits. Equivalently, `(R) is not perfect, that is,

it is not in the stable subcategory of ko-modules generated by ko under finite colimits, shifts, and retracts.
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so if `(C) is not compact over ku, then `(R) is also not compact over ko. To show this, we observe
that `(C) ⊗ku KU = KU[ 1

2 ] is obtained from `(C) by inverting 2b and L(C)[ 1
2 ] ' KU[ 1

2 ]. Now,

KU[ 1
2 ] is not compact over KU. Indeed, if it were compact we would have

KU[ 1
2 ] ' mapKU(KU[ 1

2 ],KU[ 1
2 ]) = colim mapKU(KU[ 1

2 ],KU)

but this colimit is constant, as 2 is already invertible on the mapping spectrum. The latter is
therefore equivalent to lim KU with transition maps given by the multiplication by 2 map. But
we have π0(lim KU) = 0 by the Milnor sequence.
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